@inproceedings{a0be5f0f0867488f95692092da5edf4b,
title = "Subgrade soil stabilization using ionic polymer variants",
abstract = "This study evaluates the potential applications of designated variant ionic polymeric pavement subgrade binders. The polymer binders such as anionic and cationic variants were synthesized and confirmed by physico-chemical characterization techniques. These binders were then applied to two types of soils. The effectiveness of stabilization was evaluated based on the data from standard mechanical tests such as compressive strengths and toughness. In general, the results revealed that application of an ionic moduli binder can improve properties of the subgrade. The strengthening of the soil was attributed to charge neutralization and hydrogen bonding while better dispersions of binders resulted in enhanced toughness and strength. Scanning electron microscopy also confirmed the soil and polymer networks.",
author = "C. Ayyavu and Iyengar, {S. R.} and Bazzi, {H. S.} and Hanley, {H. J.H.M.} and Little, {Dallas N.}",
note = "Publisher Copyright: {\textcopyright} 2018 Taylor & Francis Group, London.; International Conference on Advances in Materials and Pavement Performance Prediction, AM3P 2018 ; Conference date: 16-04-2018 Through 18-04-2018",
year = "2018",
language = "English",
isbn = "9781138313095",
series = "Advances in Materials and Pavement Performance Prediction - Proceedings of the International AM3P Conference, 2018",
publisher = "CRC Press/Balkema",
pages = "521--524",
editor = "Eyad Masad and Ilaria Menapace and Amit Bhasin and Tom Scarpas and Anupam Kumar",
booktitle = "Advances in Materials and Pavement Performance Prediction - Proceedings of the International AM3P Conference, 2018",
}