Subretinal macrophages produce classical complement activator C1q leading to the progression of focal retinal degeneration

Haihan Jiao, Matt Rutar, Nilisha Fernando, Ted Yednock, Sethu Sankaranarayanan, Riemke Aggio-Bruce, Jan Provis, Riccardo Natoli*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    43 Citations (Scopus)


    Background: The role of the alternative complement pathway and its mediation by retinal microglia and macrophages, is well-established in the pathogenesis of Age-Related Macular Degeneration (AMD). However, the contribution of the classical complement pathway towards the progression of retinal degenerations is not fully understood, including the role of complement component 1q (C1q) as a critical activator molecule of the classical pathway. Here, we investigated the contribution of C1q to progressive photoreceptor loss and neuroinflammation in retinal degenerations. Methods: Wild-type (WT), C1qa knockout (C1qa -/- ) and mice treated with a C1q inhibitor (ANX-M1; Annexon Biosciences), were exposed to photo-oxidative damage (PD) and were observed for progressive lesion development. Retinal function was assessed by electroretinography, followed by histological analyses to assess photoreceptor degeneration. Retinal inflammation was investigated through complement activation, macrophage recruitment and inflammasome expression using western blotting, qPCR and immunofluorescence. C1q was localised in human AMD donor retinas using immunohistochemistry. Results: PD mice had increased levels of C1qa which correlated with increasing photoreceptor cell death and macrophage recruitment. C1qa -/- mice did not show any differences in photoreceptor loss or inflammation at 7 days compared to WT, however at 14 days after the onset of damage, C1qa -/- retinas displayed less photoreceptor cell death, reduced microglia/macrophage recruitment to the photoreceptor lesion, and higher visual function. C1qa -/- mice displayed reduced inflammasome and IL-1β expression in microglia and macrophages in the degenerating retina. Retinal neutralisation of C1q, using an intravitreally-delivered anti-C1q antibody, reduced the progression of retinal degeneration following PD, while systemic delivery had no effect. Finally, retinal C1q was found to be expressed by subretinal microglia/macrophages located in the outer retina of early AMD donor eyes, and in mouse PD retinas. Conclusions: Our data implicate subretinal macrophages, C1q and the classical pathway in progressive retinal degeneration. We demonstrate a role of local C1q produced by microglia/macrophages as an instigator of inflammasome activation and inflammation. Crucially, we have shown that retinal C1q neutralisation during disease progression may slow retinal atrophy, providing a novel strategy for the treatment of complement-mediated retinal degenerations including AMD.

    Original languageEnglish
    Article number45
    JournalMolecular Neurodegeneration
    Issue number1
    Publication statusPublished - 20 Aug 2018


    Dive into the research topics of 'Subretinal macrophages produce classical complement activator C1q leading to the progression of focal retinal degeneration'. Together they form a unique fingerprint.

    Cite this