TY - JOUR
T1 - Sufficient m-out-of-n (m/n) bootstrap
AU - Alin, Aylin
AU - Martin, Michael A.
AU - Beyaztas, Ufuk
AU - Pathak, Pramod K.
N1 - Publisher Copyright:
© 2017 Informa UK Limited, trading as Taylor & Francis Group.
PY - 2017/6/13
Y1 - 2017/6/13
N2 - Traditional resampling methods for estimating sampling distributions sometimes fail, and alternative approaches are then needed. For example, if the classical central limit theorem does not hold and the naïve bootstrap fails, the m/n bootstrap, based on smaller-sized resamples, may be used as an alternative. An alternative to the naïve bootstrap, the sufficient bootstrap, which uses only the distinct observations in a bootstrap sample, is another recently proposed bootstrap approach that has been suggested to reduce the computational burden associated with bootstrapping. It works as long as naïve bootstrap does. However, if the naïve bootstrap fails, so will the sufficient bootstrap. In this paper, we propose combining the sufficient bootstrap with the m/n bootstrap in order to both regain consistent estimation of sampling distributions and to reduce the computational burden of the bootstrap. We obtain necessary and sufficient conditions for asymptotic normality of the proposed method, and propose new values for the resample size m. We compare the proposed method with the naïve bootstrap, the sufficient bootstrap, and the m/n bootstrap by simulation.
AB - Traditional resampling methods for estimating sampling distributions sometimes fail, and alternative approaches are then needed. For example, if the classical central limit theorem does not hold and the naïve bootstrap fails, the m/n bootstrap, based on smaller-sized resamples, may be used as an alternative. An alternative to the naïve bootstrap, the sufficient bootstrap, which uses only the distinct observations in a bootstrap sample, is another recently proposed bootstrap approach that has been suggested to reduce the computational burden associated with bootstrapping. It works as long as naïve bootstrap does. However, if the naïve bootstrap fails, so will the sufficient bootstrap. In this paper, we propose combining the sufficient bootstrap with the m/n bootstrap in order to both regain consistent estimation of sampling distributions and to reduce the computational burden of the bootstrap. We obtain necessary and sufficient conditions for asymptotic normality of the proposed method, and propose new values for the resample size m. We compare the proposed method with the naïve bootstrap, the sufficient bootstrap, and the m/n bootstrap by simulation.
KW - Asymptotic normality
KW - finite population
KW - m/n bootstrap
KW - naïve bootstrap
KW - simulation
KW - sufficient bootstrap
UR - http://www.scopus.com/inward/record.url?scp=85011586392&partnerID=8YFLogxK
U2 - 10.1080/00949655.2017.1284847
DO - 10.1080/00949655.2017.1284847
M3 - Article
SN - 0094-9655
VL - 87
SP - 1742
EP - 1753
JO - Journal of Statistical Computation and Simulation
JF - Journal of Statistical Computation and Simulation
IS - 9
ER -