Sufficient m-out-of-n (m/n) bootstrap

Aylin Alin*, Michael A. Martin, Ufuk Beyaztas, Pramod K. Pathak

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    10 Citations (Scopus)

    Abstract

    Traditional resampling methods for estimating sampling distributions sometimes fail, and alternative approaches are then needed. For example, if the classical central limit theorem does not hold and the naïve bootstrap fails, the m/n bootstrap, based on smaller-sized resamples, may be used as an alternative. An alternative to the naïve bootstrap, the sufficient bootstrap, which uses only the distinct observations in a bootstrap sample, is another recently proposed bootstrap approach that has been suggested to reduce the computational burden associated with bootstrapping. It works as long as naïve bootstrap does. However, if the naïve bootstrap fails, so will the sufficient bootstrap. In this paper, we propose combining the sufficient bootstrap with the m/n bootstrap in order to both regain consistent estimation of sampling distributions and to reduce the computational burden of the bootstrap. We obtain necessary and sufficient conditions for asymptotic normality of the proposed method, and propose new values for the resample size m. We compare the proposed method with the naïve bootstrap, the sufficient bootstrap, and the m/n bootstrap by simulation.

    Original languageEnglish
    Pages (from-to)1742-1753
    Number of pages12
    JournalJournal of Statistical Computation and Simulation
    Volume87
    Issue number9
    DOIs
    Publication statusPublished - 13 Jun 2017

    Fingerprint

    Dive into the research topics of 'Sufficient m-out-of-n (m/n) bootstrap'. Together they form a unique fingerprint.

    Cite this