TY - GEN
T1 - Sum throughput maximization for heterogeneous multicell networks with RF-powered relays
AU - Nasir, Ali A.
AU - Ngo, Duy T.
AU - Zhou, Xiangyun
AU - Kennedy, Rodney A.
AU - Durrani, Salman
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/9/9
Y1 - 2015/9/9
N2 - This paper considers a heterogeneous multicell network where the base station (BS) in each cell communicates with its cell-edge user with the assistance of an amplify-and-forward relay node. Equipped with a power splitter and a wireless energy harvester, the relay scavenges RF energy from the received signals to process and forward the information. In the face of strong intercell interference and limited radio resources, we develop a resource allocation scheme that jointly optimizes (i) BS transmit powers, (ii) power splitting factors for energy harvesting and information processing at the relays, and (iii) relay transmit powers. To solve the highly non-convex problem formulation of sum-rate maximization, we propose to apply the successive convex approximation (SCA) approach and devise an iterative algorithm based on geometric programming. The proposed algorithm transforms the nonconvex problem into a sequence of convex problems, each of which is solved very efficiently by the interior-point method. We prove that our developed algorithm converges to an optimal solution that satisfies the Karush-Kuhn-Tucker conditions of the original nonconvex problem. Numerical results confirm that our joint optimization solution substantially improves the network performance, compared to the existing solution wherein only the received power splitting factors at the relays are optimized.
AB - This paper considers a heterogeneous multicell network where the base station (BS) in each cell communicates with its cell-edge user with the assistance of an amplify-and-forward relay node. Equipped with a power splitter and a wireless energy harvester, the relay scavenges RF energy from the received signals to process and forward the information. In the face of strong intercell interference and limited radio resources, we develop a resource allocation scheme that jointly optimizes (i) BS transmit powers, (ii) power splitting factors for energy harvesting and information processing at the relays, and (iii) relay transmit powers. To solve the highly non-convex problem formulation of sum-rate maximization, we propose to apply the successive convex approximation (SCA) approach and devise an iterative algorithm based on geometric programming. The proposed algorithm transforms the nonconvex problem into a sequence of convex problems, each of which is solved very efficiently by the interior-point method. We prove that our developed algorithm converges to an optimal solution that satisfies the Karush-Kuhn-Tucker conditions of the original nonconvex problem. Numerical results confirm that our joint optimization solution substantially improves the network performance, compared to the existing solution wherein only the received power splitting factors at the relays are optimized.
UR - http://www.scopus.com/inward/record.url?scp=84953712552&partnerID=8YFLogxK
U2 - 10.1109/ICC.2015.7248651
DO - 10.1109/ICC.2015.7248651
M3 - Conference contribution
T3 - IEEE International Conference on Communications
SP - 2196
EP - 2202
BT - 2015 IEEE International Conference on Communications, ICC 2015
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - IEEE International Conference on Communications, ICC 2015
Y2 - 8 June 2015 through 12 June 2015
ER -