Super-Resolving Very Low-Resolution Face Images with Supplementary Attributes

Xin Yu, Basura Fernando, Richard Hartley, Fatih Porikli

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    160 Citations (Scopus)

    Abstract

    Given a tiny face image, existing face hallucination methods aim at super-resolving its high-resolution (HR) counterpart by learning a mapping from an exemplar dataset. Since a low-resolution (LR) input patch may correspond to many HR candidate patches, this ambiguity may lead to distorted HR facial details and wrong attributes such as gender reversal. An LR input contains low-frequency facial components of its HR version while its residual face image, defined as the difference between the HR ground-truth and interpolated LR images, contains the missing high-frequency facial details. We demonstrate that supplementing residual images or feature maps with additional facial attribute information can significantly reduce the ambiguity in face super-resolution. To explore this idea, we develop an attribute-embedded upsampling network, which consists of an upsampling network and a discriminative network. The upsampling network is composed of an autoencoder with skip-connections, which incorporates facial attribute vectors into the residual features of LR inputs at the bottleneck of the autoencoder and deconvolutional layers used for upsampling. The discriminative network is designed to examine whether super-resolved faces contain the desired attributes or not and then its loss is used for updating the upsampling network. In this manner, we can super-resolve tiny (16Ã - 16 pixels) unaligned face images with a large upscaling factor of 8Ã - while reducing the uncertainty of one-to-many mappings remarkably. By conducting extensive evaluations on a large-scale dataset, we demonstrate that our method achieves superior face hallucination results and outperforms the state-of-the-art.

    Original languageEnglish
    Title of host publicationProceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
    PublisherIEEE Computer Society
    Pages908-917
    Number of pages10
    ISBN (Electronic)9781538664209
    DOIs
    Publication statusPublished - 14 Dec 2018
    Event31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 - Salt Lake City, United States
    Duration: 18 Jun 201822 Jun 2018

    Publication series

    NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
    ISSN (Print)1063-6919

    Conference

    Conference31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
    Country/TerritoryUnited States
    CitySalt Lake City
    Period18/06/1822/06/18

    Fingerprint

    Dive into the research topics of 'Super-Resolving Very Low-Resolution Face Images with Supplementary Attributes'. Together they form a unique fingerprint.

    Cite this