TY - GEN
T1 - Super-Resolving Very Low-Resolution Face Images with Supplementary Attributes
AU - Yu, Xin
AU - Fernando, Basura
AU - Hartley, Richard
AU - Porikli, Fatih
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/12/14
Y1 - 2018/12/14
N2 - Given a tiny face image, existing face hallucination methods aim at super-resolving its high-resolution (HR) counterpart by learning a mapping from an exemplar dataset. Since a low-resolution (LR) input patch may correspond to many HR candidate patches, this ambiguity may lead to distorted HR facial details and wrong attributes such as gender reversal. An LR input contains low-frequency facial components of its HR version while its residual face image, defined as the difference between the HR ground-truth and interpolated LR images, contains the missing high-frequency facial details. We demonstrate that supplementing residual images or feature maps with additional facial attribute information can significantly reduce the ambiguity in face super-resolution. To explore this idea, we develop an attribute-embedded upsampling network, which consists of an upsampling network and a discriminative network. The upsampling network is composed of an autoencoder with skip-connections, which incorporates facial attribute vectors into the residual features of LR inputs at the bottleneck of the autoencoder and deconvolutional layers used for upsampling. The discriminative network is designed to examine whether super-resolved faces contain the desired attributes or not and then its loss is used for updating the upsampling network. In this manner, we can super-resolve tiny (16Ã - 16 pixels) unaligned face images with a large upscaling factor of 8Ã - while reducing the uncertainty of one-to-many mappings remarkably. By conducting extensive evaluations on a large-scale dataset, we demonstrate that our method achieves superior face hallucination results and outperforms the state-of-the-art.
AB - Given a tiny face image, existing face hallucination methods aim at super-resolving its high-resolution (HR) counterpart by learning a mapping from an exemplar dataset. Since a low-resolution (LR) input patch may correspond to many HR candidate patches, this ambiguity may lead to distorted HR facial details and wrong attributes such as gender reversal. An LR input contains low-frequency facial components of its HR version while its residual face image, defined as the difference between the HR ground-truth and interpolated LR images, contains the missing high-frequency facial details. We demonstrate that supplementing residual images or feature maps with additional facial attribute information can significantly reduce the ambiguity in face super-resolution. To explore this idea, we develop an attribute-embedded upsampling network, which consists of an upsampling network and a discriminative network. The upsampling network is composed of an autoencoder with skip-connections, which incorporates facial attribute vectors into the residual features of LR inputs at the bottleneck of the autoencoder and deconvolutional layers used for upsampling. The discriminative network is designed to examine whether super-resolved faces contain the desired attributes or not and then its loss is used for updating the upsampling network. In this manner, we can super-resolve tiny (16Ã - 16 pixels) unaligned face images with a large upscaling factor of 8Ã - while reducing the uncertainty of one-to-many mappings remarkably. By conducting extensive evaluations on a large-scale dataset, we demonstrate that our method achieves superior face hallucination results and outperforms the state-of-the-art.
UR - http://www.scopus.com/inward/record.url?scp=85055715733&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2018.00101
DO - 10.1109/CVPR.2018.00101
M3 - Conference contribution
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 908
EP - 917
BT - Proceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
PB - IEEE Computer Society
T2 - 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
Y2 - 18 June 2018 through 22 June 2018
ER -