Superposition operator in sobolev spaces on domains

Denis A. Labutin*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    1 Citation (Scopus)

    Abstract

    For an arbitrary open set Ω ⊂ ℝn we characterize all functions G on the real line such that G o u ∈ W1,p(Ω) for all u ∈ W1,p. New element in the proof is based on Maz'ya's capacitary criterion for the imbedding W1,p(Ω) → L(Ω).

    Original languageEnglish
    Pages (from-to)3399-3403
    Number of pages5
    JournalProceedings of the American Mathematical Society
    Volume128
    Issue number11
    DOIs
    Publication statusPublished - 2000

    Fingerprint

    Dive into the research topics of 'Superposition operator in sobolev spaces on domains'. Together they form a unique fingerprint.

    Cite this