TY - GEN
T1 - Supervised exponential family principal component analysis via convex optimization
AU - Guo, Yuhong
PY - 2009
Y1 - 2009
N2 - Recently, supervised dimensionality reduction has been gaining attention, owing to the realization that data labels are often available and indicate important underlying structure in the data. In this paper, we present a novel convex supervised dimensionality reduction approach based on exponential family PCA, which is able to avoid the local optima of typical EM learning. Moreover, by introducing a sample-based approximation to exponential family models, it overcomes the limitation of the prevailing Gaussian assumptions of standard PCA, and produces a kernelized formulation for nonlinear supervised dimensionality reduction. A training algorithm is then devised based on a subgradient bundle method, whose scalability can be gained using a coordinate descent procedure. The advantage of our global optimization approach is demonstrated by empirical results over both synthetic and real data.
AB - Recently, supervised dimensionality reduction has been gaining attention, owing to the realization that data labels are often available and indicate important underlying structure in the data. In this paper, we present a novel convex supervised dimensionality reduction approach based on exponential family PCA, which is able to avoid the local optima of typical EM learning. Moreover, by introducing a sample-based approximation to exponential family models, it overcomes the limitation of the prevailing Gaussian assumptions of standard PCA, and produces a kernelized formulation for nonlinear supervised dimensionality reduction. A training algorithm is then devised based on a subgradient bundle method, whose scalability can be gained using a coordinate descent procedure. The advantage of our global optimization approach is demonstrated by empirical results over both synthetic and real data.
UR - http://www.scopus.com/inward/record.url?scp=84863337814&partnerID=8YFLogxK
M3 - Conference contribution
SN - 9781605609492
T3 - Advances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference
SP - 569
EP - 576
BT - Advances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference
PB - Neural Information Processing Systems
T2 - 22nd Annual Conference on Neural Information Processing Systems, NIPS 2008
Y2 - 8 December 2008 through 11 December 2008
ER -