TY - JOUR
T1 - Supplementation of the diet with high-viscosity beta-glucan results in enrichment for lactobacilli in the rat cecum
AU - Snart, Jennifer
AU - Bibiloni, Rodrigo
AU - Grayson, Teresa
AU - Lay, Christophe
AU - Zhang, Haiyan
AU - Allison, Gwen E.
AU - Laverdiere, Julie K.
AU - Temelli, Feral
AU - Vasanthan, Thavaratnam
AU - Bell, Rhonda
AU - Tannock, Gerald W.
PY - 2006/3
Y1 - 2006/3
N2 - BBn (BioBreeding) rats were fed casein-based diets supplemented with barley flour, oatmeal flour, cellulose, or barley β-glucans of high [HV] or low viscosity [LV] in order to measure the prebiotic effects of these different sources of dietary fiber. The dietary impact on the composition of the cecal microbiota was determined by the generation of denaturing gradient gel electrophoresis (DGGE) profiles of PCR-amplified 16S rRNA gene sequences. The DGGE profiles produced from the cecal microbiota of rats within each dietary group were similar, but consensus profiles generated from pooled bacterial DNAs showed differences between rat groups. Animals fed HV glucans (HV-fed rats) had DGGE consensus profiles that were 30% dissimilar from those of the other rat groups. A 16S rRNA gene fragment that was more conspicuous in the profiles of HV-fed animals than in those of cellulose-fed rats had sequence identity with Lactobacillus acidophilus. Measurements of L. acidophilus rRNA abundance (DNA-RNA hybridization), the preparation of cloned 16S rRNA gene libraries, and the enumeration of Lactobacillus cells (fluorescent in situ hybridization) showed that lactobacilli formed a greater proportion of the cecal microbiota in HV-fed rats. In vitro experiments confirmed that some lactobacilli utilize oligosaccharides (degree of polymerization, 3 or 4) present in β-glucan hydrolysates. The results of this study have relevance to the use of purified β-glucan products as dietary supplements for human consumption.
AB - BBn (BioBreeding) rats were fed casein-based diets supplemented with barley flour, oatmeal flour, cellulose, or barley β-glucans of high [HV] or low viscosity [LV] in order to measure the prebiotic effects of these different sources of dietary fiber. The dietary impact on the composition of the cecal microbiota was determined by the generation of denaturing gradient gel electrophoresis (DGGE) profiles of PCR-amplified 16S rRNA gene sequences. The DGGE profiles produced from the cecal microbiota of rats within each dietary group were similar, but consensus profiles generated from pooled bacterial DNAs showed differences between rat groups. Animals fed HV glucans (HV-fed rats) had DGGE consensus profiles that were 30% dissimilar from those of the other rat groups. A 16S rRNA gene fragment that was more conspicuous in the profiles of HV-fed animals than in those of cellulose-fed rats had sequence identity with Lactobacillus acidophilus. Measurements of L. acidophilus rRNA abundance (DNA-RNA hybridization), the preparation of cloned 16S rRNA gene libraries, and the enumeration of Lactobacillus cells (fluorescent in situ hybridization) showed that lactobacilli formed a greater proportion of the cecal microbiota in HV-fed rats. In vitro experiments confirmed that some lactobacilli utilize oligosaccharides (degree of polymerization, 3 or 4) present in β-glucan hydrolysates. The results of this study have relevance to the use of purified β-glucan products as dietary supplements for human consumption.
UR - http://www.scopus.com/inward/record.url?scp=33644951498&partnerID=8YFLogxK
U2 - 10.1128/AEM.72.3.1925-1931.2006
DO - 10.1128/AEM.72.3.1925-1931.2006
M3 - Article
SN - 0099-2240
VL - 72
SP - 1925
EP - 1931
JO - Applied and Environmental Microbiology
JF - Applied and Environmental Microbiology
IS - 3
ER -