Surface phase diagram of hematite pseudocubes in hydrous environments

Haibo Guo*, Amanda S. Barnard

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

Hematite nanoparticles often display the pseudocubic morphology enclosed exclusively by the (012) surface. The surface chemistry on these facets is important to understand the formation and properties of these nanoparticles in varying chemical environments. The surface is typically terminated by hydroxyl groups in water or humid atmospheres, and the various terminations differ largely in composition, structure, thermodynamic stability, and chemical reactivity. When we compare a large variety of chemical configurations, we find that three specific terminations are thermodynamically stable under aerobic conditions. The termination by singly and triply coordinated hydroxyl groups (S-,T-OH) is stable at low temperatures and in hydrous environments, the stoichiometric clean termination is stable at high temperatures and in dry environments, and the termination by doubly coordinated hydroxyl groups (D-OH) is stable under intermediate conditions. The S-,T-OH termination can convert topologically to the clean surface by dissociative adsorption of water, whereas the conversion from these two terminations to the D-OH termination requires re-organization of several atomic layers at the surface. Therefore, the surface may reversibly change between S-,T-OH and the clean surface depending on the temperature and humidity. Based on these findings we have constructed surface phase diagrams to predict the termination types in different hydrous and humid environments.

Original languageEnglish
Pages (from-to)161-167
Number of pages7
JournalJournal of Materials Chemistry
Volume22
Issue number1
DOIs
Publication statusPublished - 7 Jan 2012
Externally publishedYes

Fingerprint

Dive into the research topics of 'Surface phase diagram of hematite pseudocubes in hydrous environments'. Together they form a unique fingerprint.

Cite this