Abstract
The bacterial flagellum is a complex self-assembling nanomachine that confers motility to the cell. Despite great variation across species, all flagella are ultimately constructed from a helical propeller that is attached to a motor embedded in the inner membrane. The motor consists of a series of stator units surrounding a central rotor made up of two ring complexes, the MS-ring and the C-ring. Despite many studies, high-resolution structural information is still lacking for the MS-ring of the rotor, and proposed mismatches in stoichiometry between the two rings have long provided a source of confusion for the field. Here, we present structures of the Salmonella MS-ring, revealing a high level of variation in inter- and intrachain symmetry that provides a structural explanation for the ability of the MS-ring to function as a complex and elegant interface between the two main functions of the flagellum—protein secretion and rotation.
Original language | English |
---|---|
Pages (from-to) | 966-975 |
Number of pages | 10 |
Journal | Nature Microbiology |
Volume | 5 |
Issue number | 7 |
DOIs | |
Publication status | Published - 1 Jul 2020 |
Externally published | Yes |