TY - JOUR
T1 - Synchronization of wing beat cycle of the desert locust, Schistocerca gregaria, by periodic light flashes
AU - Schmeling, Fabian
AU - Stange, Gert
AU - Homberg, Uwe
PY - 2010/3
Y1 - 2010/3
N2 - Studies on the generation of rhythmic motor patterns have shown that peripheral sensory input may contribute substantially to the rhythm generating network. A prominent example is the wing beat frequency of desert locusts, which can be entrained to rhythmic mechanosensory input, but also to the frequency of periodic light flashes. To further analyze the entrainment by light, tethered flying locusts were presented with periodic light flashes, while the position of the forewing was filmed. We show that entrainment of wing beat occurs both in the UV and green range of light. Animals maintained a characteristic phase relationship to the light stimulus with the most elevated wing position occurring at the end of the dark phase. Speed and time course of entrainment varied greatly and ranged from the duration of a single wing beat cycle to several seconds. To identify the visual system mediating entrainment, synchronization to UV light was tested after cutting the optic stalks to the optic lobes/compound eyes or the ocellar nerves. The results show that light entrainment of the locust flight pattern is largely and perhaps exclusively mediated via the fast ocellar pathway and may have a role to stabilize flight with respect to the horizon.
AB - Studies on the generation of rhythmic motor patterns have shown that peripheral sensory input may contribute substantially to the rhythm generating network. A prominent example is the wing beat frequency of desert locusts, which can be entrained to rhythmic mechanosensory input, but also to the frequency of periodic light flashes. To further analyze the entrainment by light, tethered flying locusts were presented with periodic light flashes, while the position of the forewing was filmed. We show that entrainment of wing beat occurs both in the UV and green range of light. Animals maintained a characteristic phase relationship to the light stimulus with the most elevated wing position occurring at the end of the dark phase. Speed and time course of entrainment varied greatly and ranged from the duration of a single wing beat cycle to several seconds. To identify the visual system mediating entrainment, synchronization to UV light was tested after cutting the optic stalks to the optic lobes/compound eyes or the ocellar nerves. The results show that light entrainment of the locust flight pattern is largely and perhaps exclusively mediated via the fast ocellar pathway and may have a role to stabilize flight with respect to the horizon.
KW - Central pattern generator
KW - Flight stabilization
KW - Insect flight
KW - Ocelli
KW - Visual system
UR - http://www.scopus.com/inward/record.url?scp=77952317263&partnerID=8YFLogxK
U2 - 10.1007/s00359-010-0505-9
DO - 10.1007/s00359-010-0505-9
M3 - Article
SN - 0340-7594
VL - 196
SP - 199
EP - 211
JO - Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology
JF - Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology
IS - 3
ER -