TY - JOUR
T1 - Syntheses, Spectroscopic, Electrochemical, and Third-Order Nonlinear Optical Studies of a Hybrid Tris{ruthenium(alkynyl)/(2-phenylpyridine)}iridium Complex
AU - Zhao, Huajian
AU - Simpson, Peter V.
AU - Barlow, Adam
AU - Moxey, Graeme J.
AU - Morshedi, Mahbod
AU - Roy, Nivya
AU - Philip, Reji
AU - Zhang, Chi
AU - Cifuentes, Marie P.
AU - Humphrey, Mark G.
N1 - Publisher Copyright:
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
PY - 2015/8/1
Y1 - 2015/8/1
N2 - The synthesis of fac-[Ir{N,C1′-(2,2′-NC5H4C6H3-5′-ξC-1-C6H2-3,5-Et2-4-ξCC6H4-4-ξCH)}3] (10), which bears pendant ethynyl groups, and its reaction with [RuCl(dppe)2]PF6 to afford the heterobimetallic complex fac-[Ir{N,C1′-(2,2′-NC5H4C6H3-5′-ξC-1-C6H2-3,5-Et2-4-ξCC6H4-4-ξC-trans-[RuCl(dppe)2])}3] (11) is described. Complex 10 is available from the two-step formation of iodo-functionalized fac-tris[2-(4-iodophenyl)pyridine]iridium(III) (6), followed by ligand-centered palladium-catalyzed coupling and desilylation reactions. Structural studies of tetrakis[2-(4-iodophenyl)pyridine-N,C1′](μ-dichloro)diiridium 5, 6, fac-[Ir{N,C1′-(2,2′-NC5H4C6H3-5′-ξC-1-C6H2-3,5-Et2-4-ξCH)}3] (8), and 10 confirm ligand-centered derivatization of the tris(2-phenylpyridine)iridium unit. Electrochemical studies reveal two (5) or one (6-10) Ir-centered oxidations for which the potential is sensitive to functionalization at the phenylpyridine groups but relatively insensitive to more remote derivatization. Compound 11 undergoes sequential Ru-centered and Ir-centered oxidation, with the potential of the latter significantly more positive than that of Ir(N,C′-NC5H4-2-C6H4-2)3. Ligand-centered π-π∗ transitions characteristic of the Ir(N,C′-NC5H4-2-C6H4-2)3 unit red-shift and gain in intensity following the iodo and alkynyl incorporation. Spectroelectrochemical studies of 6, 7, 9, and 11 reveal the appearance in each case of new low-energy LMCT bands following formal IrIII/IV oxidation preceded, in the case of 11, by the appearance of a low-energy LMCT band associated with the formal RuII/III oxidation process. Emission maxima of 6-10 reveal a red-shift upon alkynyl group introduction and arylalkynyl π-system lengthening; this process is quenched upon incorporation of the ligated ruthenium moiety on proceeding to 11. Third-order nonlinear optical studies of 11 were undertaken at the benchmark wavelengths of 800 nm (fs pulses) and 532 nm (ns pulses), the results from the former suggesting a dominant contribution from two-photon absorption, and results from the latter being consistent with primarily excited-state absorption.
AB - The synthesis of fac-[Ir{N,C1′-(2,2′-NC5H4C6H3-5′-ξC-1-C6H2-3,5-Et2-4-ξCC6H4-4-ξCH)}3] (10), which bears pendant ethynyl groups, and its reaction with [RuCl(dppe)2]PF6 to afford the heterobimetallic complex fac-[Ir{N,C1′-(2,2′-NC5H4C6H3-5′-ξC-1-C6H2-3,5-Et2-4-ξCC6H4-4-ξC-trans-[RuCl(dppe)2])}3] (11) is described. Complex 10 is available from the two-step formation of iodo-functionalized fac-tris[2-(4-iodophenyl)pyridine]iridium(III) (6), followed by ligand-centered palladium-catalyzed coupling and desilylation reactions. Structural studies of tetrakis[2-(4-iodophenyl)pyridine-N,C1′](μ-dichloro)diiridium 5, 6, fac-[Ir{N,C1′-(2,2′-NC5H4C6H3-5′-ξC-1-C6H2-3,5-Et2-4-ξCH)}3] (8), and 10 confirm ligand-centered derivatization of the tris(2-phenylpyridine)iridium unit. Electrochemical studies reveal two (5) or one (6-10) Ir-centered oxidations for which the potential is sensitive to functionalization at the phenylpyridine groups but relatively insensitive to more remote derivatization. Compound 11 undergoes sequential Ru-centered and Ir-centered oxidation, with the potential of the latter significantly more positive than that of Ir(N,C′-NC5H4-2-C6H4-2)3. Ligand-centered π-π∗ transitions characteristic of the Ir(N,C′-NC5H4-2-C6H4-2)3 unit red-shift and gain in intensity following the iodo and alkynyl incorporation. Spectroelectrochemical studies of 6, 7, 9, and 11 reveal the appearance in each case of new low-energy LMCT bands following formal IrIII/IV oxidation preceded, in the case of 11, by the appearance of a low-energy LMCT band associated with the formal RuII/III oxidation process. Emission maxima of 6-10 reveal a red-shift upon alkynyl group introduction and arylalkynyl π-system lengthening; this process is quenched upon incorporation of the ligated ruthenium moiety on proceeding to 11. Third-order nonlinear optical studies of 11 were undertaken at the benchmark wavelengths of 800 nm (fs pulses) and 532 nm (ns pulses), the results from the former suggesting a dominant contribution from two-photon absorption, and results from the latter being consistent with primarily excited-state absorption.
KW - heterometallic complexes
KW - iridium
KW - ligand design
KW - nonlinear optics
KW - ruthenium
UR - http://www.scopus.com/inward/record.url?scp=84938307112&partnerID=8YFLogxK
U2 - 10.1002/chem.201500951
DO - 10.1002/chem.201500951
M3 - Article
SN - 0947-6539
VL - 21
SP - 11843
EP - 11854
JO - Chemistry - A European Journal
JF - Chemistry - A European Journal
IS - 33
ER -