Synthesis and Electronic Structures of Heavy Lanthanide Metallocenium Cations

Conrad A. P. Goodwin, Daniel Reta, Fabrizio Ortu, Nicholas F. Chilton, David P. Mills

Research output: Contribution to journalArticlepeer-review

125 Citations (Scopus)

Abstract

The origin of 60 K magnetic hysteresis in the dysprosocenium complex [Dy(Cpttt)2][B(C6F5)4] (Cpttt = C5H2tBu3-1,2,4, 1-Dy) remains mysterious, thus we envisaged that analysis of a series of [Ln(Cpttt)2]+ (Ln = lanthanide) cations could shed light on these properties. Herein we report the synthesis and physical characterization of a family of isolated [Ln(Cpttt)2]+ cations (1-Ln; Ln = Gd, Ho, Er, Tm, Yb, Lu), synthesized by halide abstraction of [Ln(Cpttt)2(Cl)] (2-Ln; Ln = Gd, Ho, Er, Tm, Yb, Lu). Complexes within the two families 1-Ln and 2-Ln are isostructural and display pseudo-linear and pseudo-trigonal crystal fields, respectively. This results in archetypal electronic structures, determined with CASSCF-SO calculations and confirmed with SQUID magnetometry and EPR spectroscopy, showing easy-axis or easy-plane magnetic anisotropy depending on the choice of Ln ion. Study of their magnetic relaxation dynamics reveals that 1-Ho also exhibits an anomalously low Raman exponent similar to 1-Dy, both being distinct from the larger and more regular Raman exponents for 2-Dy, 2-Er, and 2-Yb. This suggests that low Raman exponents arise from the unique spin-phonon coupling of isolated [Ln(Cpttt)2]+ cations. Crucially, this highlights a direct connection between ligand coordination modes and spin-phonon coupling, and therefore we propose that the exclusive presence of multihapto ligands in 1-Dy is the origin of its remarkable magnetic properties. Controlling the spin-phonon coupling through ligand design thus appears vital for realizing the next generation of high-temperature single-molecule magnets.
Original languageEnglish
Pages (from-to)18714-18724
Number of pages11
JournalJournal of the American Chemical Society
Volume139
Issue number51
DOIs
Publication statusPublished - 28 Nov 2017

Fingerprint

Dive into the research topics of 'Synthesis and Electronic Structures of Heavy Lanthanide Metallocenium Cations'. Together they form a unique fingerprint.

Cite this