TY - JOUR
T1 - T cell expansion is the limiting factor of virus control in mice with attenuated TCR signaling
T2 - Implications for human immunodeficiency
AU - Hillen, Kristina M.
AU - Gather, Ruth
AU - Enders, Anselm
AU - Pircher, Hanspeter
AU - Aichele, Peter
AU - Fisch, Paul
AU - Blumenthal, Britta
AU - Schamel, Wolfgang W.
AU - Straub, Tobias
AU - Goodnow, Christopher C.
AU - Ehl, Stephan
N1 - Publisher Copyright:
Copyright © 2015 by The American Association of Immunologists, Inc.
PY - 2015/3/15
Y1 - 2015/3/15
N2 - Defining the minimal thresholds for effective antiviral T cell immunity is important for clinical decisions in immunodeficient patients. TCR signaling is critical for T cell development, activation, and effector functions. In this article, we analyzed which of these TCR-mediated processes is limiting for antiviral immunity in a mouse strain with reduced expression of SLP-76 (twp mice). Despite severe T cell activation defects in vitro, twp mice generated a normal proportion of antiviral effector T cells postinfection with lymphocytic choriomeningitis virus (LCMV). Twp CD8+ T cells showed impaired polyfunctional cytokine production, whereas cytotoxicity as the crucial antiviral effector function for LCMV control was normal. The main limiting factor in the antiviral response of twp mice was impaired T cell proliferation and survival, leading to a 5- to 10-fold reduction of antiviral T cells at the peak of the immune response. This was still sufficient to control infection with the LCMVArmstrong strain, but the more rapidly replicating LCMV-WE induced T cell exhaustion and viral persistence. Thus, under conditions of impaired TCR signaling, reduced T cell expansion was the limiting factor in antiviral immunity. These findings have implications for understanding antiviral immunity in patients with T cell deficiencies.
AB - Defining the minimal thresholds for effective antiviral T cell immunity is important for clinical decisions in immunodeficient patients. TCR signaling is critical for T cell development, activation, and effector functions. In this article, we analyzed which of these TCR-mediated processes is limiting for antiviral immunity in a mouse strain with reduced expression of SLP-76 (twp mice). Despite severe T cell activation defects in vitro, twp mice generated a normal proportion of antiviral effector T cells postinfection with lymphocytic choriomeningitis virus (LCMV). Twp CD8+ T cells showed impaired polyfunctional cytokine production, whereas cytotoxicity as the crucial antiviral effector function for LCMV control was normal. The main limiting factor in the antiviral response of twp mice was impaired T cell proliferation and survival, leading to a 5- to 10-fold reduction of antiviral T cells at the peak of the immune response. This was still sufficient to control infection with the LCMVArmstrong strain, but the more rapidly replicating LCMV-WE induced T cell exhaustion and viral persistence. Thus, under conditions of impaired TCR signaling, reduced T cell expansion was the limiting factor in antiviral immunity. These findings have implications for understanding antiviral immunity in patients with T cell deficiencies.
UR - http://www.scopus.com/inward/record.url?scp=84924546654&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.1400328
DO - 10.4049/jimmunol.1400328
M3 - Article
SN - 0022-1767
VL - 194
SP - 2725
EP - 2734
JO - Journal of Immunology
JF - Journal of Immunology
IS - 6
ER -