Tailoring terpenoid plasma polymer properties by controlling the substrate temperature during PECVD

Avishek Kumar, Daniel S. Grant, Kateryna Bazaka, Mohan V. Jacob*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Polymers derived from natural, minimally-processed materials have recently emerged as a more sustainable alternative to synthetic polymers, with promising applications in biocompatible and biodegradable devices. Plasma-enhanced deposition is well-suited to one-step, fast, and efficient synthesis of highly crosslinked inert polymers directly from natural resources, however, fabrication of biologically active polymers remains a challenge. Plasma processing parameters influence the properties such as surface energy, roughness, morphology, and chemical composition of deposited polymers and thus their final applications. This article reports on the important role of substrate temperature (TS) in the chemical composition, wettability, refractive index, and crosslinking density of plasma polymers derived from terpenoids. Experiments are conducted as a function of deposition power Pd, and substrate temperature, TS. TS varied from 40 to 280 °C and is externally controlled. Atomic force microscopy analysis reveals the change in deposition mechanism attributed to shadowing effect at higher TS and Pd. Increase in band gap (Eg) with high Ts deposition for terpenoid based plasma polymers is observed. Swelling behavior analyzed by in situ ellipsometry affirms the enhanced crosslink density with increasing deposition rate. Fourier transform infrared analysis exhibits the formation of additional chemical moieties with increasing TS. Increase in deposition rate with increasing TS at higher Pd supports the theory of direct incorporation of depositing particles as dominant mechanism of plasma polymerization in this study.

Original languageEnglish
Article number45771
JournalJournal of Applied Polymer Science
Volume135
Issue number5
DOIs
Publication statusPublished - 5 Feb 2018
Externally publishedYes

Fingerprint

Dive into the research topics of 'Tailoring terpenoid plasma polymer properties by controlling the substrate temperature during PECVD'. Together they form a unique fingerprint.

Cite this