Tangled (up in) cubes

S. T. Hyde*, G. E. Schröder-Turk

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    15 Citations (Scopus)

    Abstract

    The 'simplest' entanglements of the graph of edges of the cube are enumerated, forming two-cell {6,3} (hexagonal mesh) complexes on the genus-one two-dimensional torus. Five chiral pairs of knotted graphs are found. The examples contain non-trivial knotted and/or linked subgraphs [(2,2), (2,4) torus links and (3,2), (4,3) torus knots].

    Original languageEnglish
    Article numberau5045
    Pages (from-to)186-197
    Number of pages12
    JournalActa Crystallographica Section A: Foundations of Crystallography
    Volume63
    Issue number2
    DOIs
    Publication statusPublished - 1 Mar 2007

    Fingerprint

    Dive into the research topics of 'Tangled (up in) cubes'. Together they form a unique fingerprint.

    Cite this