Tectono-metallogenic systems — The place of mineral systems within tectonic evolution, with an emphasis on Australian examples

David L. Huston*, Terrence P. Mernagh, Steffen G. Hagemann, Michael P. Doublier, Marco Fiorentini, David C. Champion, A. Lynton Jaques, Karol Czarnota, Ross Cayley, Roger Skirrow, Evgeniy Bastrakov

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

101 Citations (Scopus)

Abstract

Tectono-metallogenic systems are geological systems that link geodynamic and tectonic processes with ore-forming processes. Fundamental geodynamic processes, including buoyancy-related processes, crustal/lithospheric thinning and crustal/lithospheric thickening, have occurred throughout Earth's history, but tectonic systems, which are driven by these processes, have evolved as Earth's interior has cooled. Tectonic systems are thought to have evolved from magma oceans in the Hadean through an unstable “stagnant-lid” regime in the earlier Archean into a proto-plate tectonic regime from the late Archean onwards. Modern-style plate tectonics is thought to have become dominant by the start of the Paleozoic. Mineral systems with general similarities to modern or geologically recent systems have been present episodically (or semi-continuously) through much of Earth's history, but most of Earth's present endowment of mineral wealth was formed during and after the Neoarchean, when proto- or modern-style plate tectonic systems became increasingly dominant and following major changes in the chemistry of the atmosphere and hydrosphere. Changes in the characteristics of some mineral systems, such as the volcanic-hosted massive sulphide (VHMS) system, reflect changes in tectonic style during the evolution towards the modern plate tectonic regime, but may also involve secular changes in the hydrosphere and atmosphere. Whereas tectono-metallogenic systems have evolved in general over Earth's history, specific tectono-metallogenic systems evolve over much shorter time frames. Most mineral deposits form in three general tectono-metallogenic systems: divergent systems, convergent systems, and intraplate systems. Although fundamental geodynamic processes have driven the evolution of these systems, their relative importance may change as the systems evolved. For example, buoyancy-driven (mantle convection/plumes) and crustal thinning are the dominant processes driving the early rift stage of divergent tectono-metallogenic systems, whereas buoyancy-driven processes (slab sinking) and crustal thickening are the most important processes during the subduction stage of convergent systems. Crustal thinning can also be an important process in the hinterland of subduction zones, producing back-arc basins that can host a number of mineral systems. As fundamental geodynamic processes act as drivers at some stage in virtually all tectonic systems, on their own these cannot be used to identify tectonic systems. Moreover, as mineral systems are ultimately the products of these same geodynamic drivers, individual mineral deposit types cannot be used to determine tectonic systems, although mineral deposit associations can, in some cases, be indicative of the tectono-metallogenic system. Ore deposits are the products of geological (mineral) systems that operate over a long time frame (hundreds of millions of years) and at scales up to the craton-scale. In essence, mineral systems increase the concentrations of commodities through geochemical and geophysical processes from bulk Earth levels to levels amenable to economic mining. Mineral system components include the geological (tectonic and architectural) setting, the driver(s) of mineralising processes, metal and fluid sources, fluid pathways, depositional trap, and post-depositional modifications. All of these components link back to geodynamic processes and the tectonic system. For example, crustal architecture, which controls the spatial distribution of, and fluid flow, within mineral systems, is largely determined by geodynamic processes and tectonic systems, and the timing of mineralisation, which generally is relatively short (commonly < 1 Myr), correlates with local and/or far-field tectonic events. The geochemical characteristics of many mineral systems are a consequence of their geodynamic and tectonic settings. Settings that are characterised by low heat flow and lack active magmatism produce low temperature fluids that are oxidised, with ore formation caused largely by redox gradients or the provision of external H2S. The characteristics of these fluids are largely governed by the rocks with which they interact, rocks that have extensively interacted with the hydrosphere and atmosphere, both environments that have been strongly oxidised since the great oxidation event in the Paleoproterozoic. In settings characterised by high heat flow and active magmatism, ore fluids tend to be higher temperature and reduced, with deposition caused by cooling, pH neutralisation, depressurisation and fluid mixing. Again, the characteristics of these fluids are governed by rocks with which they interact, in this case more reduced magmatic rocks derived from the mantle or lower crust.

Original languageEnglish
Pages (from-to)168-210
Number of pages43
JournalOre Geology Reviews
Volume76
DOIs
Publication statusPublished - 1 Jul 2016

Fingerprint

Dive into the research topics of 'Tectono-metallogenic systems — The place of mineral systems within tectonic evolution, with an emphasis on Australian examples'. Together they form a unique fingerprint.

Cite this