Temporal cueing enhances neuronal and behavioral discrimination performance in rat whisker system

Conrad C.Y. Lee*, Colin W.G. Clifford, Ehsan Arabzadeh

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    8 Citations (Scopus)

    Abstract

    Since sensory systems operate with a finite quantity of processing resources, an animal would benefit from prioritizing processing of sensory stimuli within a time window that is expected to provide key information. This behavioral manifestation of such prioritization is known as attention. Here, we investigate attention with temporal cueing and its neuronal correlates in the rat primary vibrissal somatosensory (vS1) cortex. Rats were trained in a simple whisker vibration detection task. A vibration was presented at one of two spatial locations (left or right), sometimes after an unknown time interval and sometimes after receiving an auditory cue. The auditory cue provided temporal but not spatial information about the vibration. We found that for all rats (n = 6), the auditory cue consistently enhanced detection of the vibration stimulus. Neuronal activity in vS1 cortex reflected the observed behavioral enhancement from temporal cueing with single units responded dif-ferentially to the whisker vibration stimulus when it was temporally predicted by the auditory cue, exhibiting an enhanced signal-to-noise ratio. Our findings indicate that rats are capable of prioritizing processing within a specified time window and provide evidence that the primary sensory cortex may participate in the temporal allocation of resources. NEW & NOTEWORTHY We demonstrate a novel paradigm of temporal cueing in rats. In a two-alternative whisker detection task, an auditory cue provided information about the timing of the stimulus but not the correct choice. In the presence of cue, detection was faster and more accurate, and neuronal activity from the primary somatosensory cortex revealed enhanced representation of vibrations. These results thus establish the rat as an alternative model organism to primates for studying temporal attention.

    Original languageEnglish
    Pages (from-to)1048-1058
    Number of pages11
    JournalJournal of Neurophysiology
    Volume121
    Issue number3
    DOIs
    Publication statusPublished - Mar 2019

    Fingerprint

    Dive into the research topics of 'Temporal cueing enhances neuronal and behavioral discrimination performance in rat whisker system'. Together they form a unique fingerprint.

    Cite this