Tensor belief propagation

Andrew Wrigley*, Wee Sun Lee, Nan Ye

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

We propose a new approximate inference algorithm for graphical models, tensor belief propagation, based on approximating the messages passed in the junction tree algorithm. Our algorithm represents the potential functions of the graphical model and all messages on the junction tree compactly as mixtures of rank-1 tensors. Using this representation, we show how to perform the operations required for inference on the junction tree efficiently: marginalisation can be computed quickly due to the factored form of rank-1 tensors while multiplication can be approximated using sampling. Our analysis gives sufficient conditions for the algorithm to perform well, including for the case of high-treewidth graphs, for which exact inference is intractable. We compare our algorithm experimentally with several approximate inference algorithms and show that it performs well.

Original languageEnglish
Title of host publication34th International Conference on Machine Learning, ICML 2017
PublisherInternational Machine Learning Society (IMLS)
Pages5765-5777
Number of pages13
ISBN (Electronic)9781510855144
Publication statusPublished - 2017
Externally publishedYes
Event34th International Conference on Machine Learning, ICML 2017 - Sydney, Australia
Duration: 6 Aug 201711 Aug 2017

Publication series

Name34th International Conference on Machine Learning, ICML 2017
Volume8

Conference

Conference34th International Conference on Machine Learning, ICML 2017
Country/TerritoryAustralia
CitySydney
Period6/08/1711/08/17

Fingerprint

Dive into the research topics of 'Tensor belief propagation'. Together they form a unique fingerprint.

Cite this