Abstract
Excited states in the N=Z+1 nucleus 73Kr have been investigated using the 40Ca(36Ar, 2pn) and 40Ca(40Ca, α2pn) reactions at 145 and 160 MeV, respectively. γ rays were detected using the Gammasphere array and events were recorded in coincidence with charged-particle and neutron detectors. The three previously observed bands were extended to high spin, and a new unfavored positive-parity band has been observed. The alignment characteristics and decay properties of the bands are all consistent with large-deformation prolate rotation, with no clear evidence for oblate bands or shape coexistence. This is quite different from neighboring 72,74Kr, indicating a strong shape-stabilizing role for the valence neutron. The experimental results are compared to extended total Routhian surface, cranked Nilsson Strutinsky, and cranked relativistic mean-field calculations. The results suggest that the paired calculations lack some important physics. Neutron-proton correlations may be the missing ingredient. There is also evidence for an unusual band crossing in the negative-parity bands, which may indicate the presence of T=0 pairing correlations. At high spin all the models can reproduce the experimental data.
Original language | English |
---|---|
Article number | 044331 |
Pages (from-to) | 443311-4433113 |
Number of pages | 3989803 |
Journal | Physical Review C - Nuclear Physics |
Volume | 65 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr 2002 |
Externally published | Yes |