TY - JOUR
T1 - The adjoint equations for thermochemical compressible mantle convection
T2 - Derivation and verification by twin experiments
AU - Ghelichkhan, S.
AU - Bunge, H. P.
N1 - Publisher Copyright:
© 2018 The Author(s) Published by the Royal Society. All rights reserved.
PY - 2018/12/12
Y1 - 2018/12/12
N2 - The adjoint method is an efficient way to obtain gradient information in a mantle convection model relative to past flow structure, allowing one to retrodict mantle flow from observations of the present-day mantle state. While adjoint equations for isochemical mantle flow have been derived for both incompressible and compressible flows, here we extend the method to thermochemical mantle flow models, and present thermochemical adjoint equations in the elastic-liquid approximation. We verify the method with twin experiments, and retrodict the flow history of a thermochemical reference model (reference twin) assuming for the final state, either a consistent thermochemical interpretation, using the thermochemical adjoint equations, or an inconsistent purely thermal interpretation, using the isochemical adjoint equations. The consistent simulation correctly retrodicts the flow evolution of the reference twin. The inconsistent case, instead, restores a false flow history whereby internal buoyancy forces and convectively maintained topography are overestimated. Because the cost function is reduced in either case, our results suggest that the adjoint method can be used to link assumptions on the role of chemical mantle heterogeneity to geologic inferences of dynamic topography, thus providing additional means to test hypotheses on mantle composition and dynamics.
AB - The adjoint method is an efficient way to obtain gradient information in a mantle convection model relative to past flow structure, allowing one to retrodict mantle flow from observations of the present-day mantle state. While adjoint equations for isochemical mantle flow have been derived for both incompressible and compressible flows, here we extend the method to thermochemical mantle flow models, and present thermochemical adjoint equations in the elastic-liquid approximation. We verify the method with twin experiments, and retrodict the flow history of a thermochemical reference model (reference twin) assuming for the final state, either a consistent thermochemical interpretation, using the thermochemical adjoint equations, or an inconsistent purely thermal interpretation, using the isochemical adjoint equations. The consistent simulation correctly retrodicts the flow evolution of the reference twin. The inconsistent case, instead, restores a false flow history whereby internal buoyancy forces and convectively maintained topography are overestimated. Because the cost function is reduced in either case, our results suggest that the adjoint method can be used to link assumptions on the role of chemical mantle heterogeneity to geologic inferences of dynamic topography, thus providing additional means to test hypotheses on mantle composition and dynamics.
KW - adjoint method
KW - global geodynamics
KW - inverse modelling
KW - mantle convection
UR - http://www.scopus.com/inward/record.url?scp=85059817054&partnerID=8YFLogxK
U2 - 10.1098/rspa.2018.0329
DO - 10.1098/rspa.2018.0329
M3 - Article
SN - 1364-5021
VL - 474
JO - Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
JF - Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
IS - 2220
M1 - 20180329
ER -