TY - JOUR
T1 - The Andromeda gamma-ray excess
T2 - background systematics of the millisecond pulsars and dark matter interpretations
AU - Zimmer, Fabian
AU - MacIas, Oscar
AU - Ando, Shin'ichiro
AU - Crocker, Roland M.
AU - Horiuchi, Shunsaku
N1 - Publisher Copyright:
© 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.
PY - 2022/11/1
Y1 - 2022/11/1
N2 - Since the discovery of an excess in gamma rays in the direction of M31, its cause has been unclear. Published interpretations focus on dark matter or stellar related origins. Studies of a similar excess in the Milky Way centre motivate a correlation of the spatial morphology of the signal with the distribution of stellar mass in M31. However, a robust determination of the best theory for the observed excess emission is challenging due to uncertainties in the astrophysical gamma-ray foreground model. We perform a spectro-morphological analysis of the M31 gamma-ray excess using state-of-the-art templates for the distribution of stellar mass in M31 and novel astrophysical foreground models for its sky region. We construct maps for the old stellar populations of M31 based on data from the PAndAS survey and carefully remove the foreground stars. We also produce improved astrophysical foreground models via novel image inpainting techniques based on machine learning methods. Our stellar maps, mimicking the location of a population of millisecond pulsars in the bulge of M31, reach a 5.4σ significance, making them as strongly favoured as the simple phenomenological models usually considered in the literature, e.g. disc-like templates. This detection is robust to generous variations of the astrophysical foreground model. Once the stellar templates are included in the astrophysical model, we show that the dark matter annihilation interpretation of the signal is unwarranted. We demonstrate that about one million unresolved millisecond pulsars naturally explain the observed gamma-ray luminosity per stellar mass, energy spectrum, and stellar bulge-to-disc flux ratio.
AB - Since the discovery of an excess in gamma rays in the direction of M31, its cause has been unclear. Published interpretations focus on dark matter or stellar related origins. Studies of a similar excess in the Milky Way centre motivate a correlation of the spatial morphology of the signal with the distribution of stellar mass in M31. However, a robust determination of the best theory for the observed excess emission is challenging due to uncertainties in the astrophysical gamma-ray foreground model. We perform a spectro-morphological analysis of the M31 gamma-ray excess using state-of-the-art templates for the distribution of stellar mass in M31 and novel astrophysical foreground models for its sky region. We construct maps for the old stellar populations of M31 based on data from the PAndAS survey and carefully remove the foreground stars. We also produce improved astrophysical foreground models via novel image inpainting techniques based on machine learning methods. Our stellar maps, mimicking the location of a population of millisecond pulsars in the bulge of M31, reach a 5.4σ significance, making them as strongly favoured as the simple phenomenological models usually considered in the literature, e.g. disc-like templates. This detection is robust to generous variations of the astrophysical foreground model. Once the stellar templates are included in the astrophysical model, we show that the dark matter annihilation interpretation of the signal is unwarranted. We demonstrate that about one million unresolved millisecond pulsars naturally explain the observed gamma-ray luminosity per stellar mass, energy spectrum, and stellar bulge-to-disc flux ratio.
KW - dark matter
KW - gamma-rays: diffuse background
KW - pulsars: general
UR - http://www.scopus.com/inward/record.url?scp=85145264287&partnerID=8YFLogxK
U2 - 10.1093/mnras/stac2464
DO - 10.1093/mnras/stac2464
M3 - Article
SN - 0035-8711
VL - 516
SP - 4469
EP - 4483
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 3
ER -