TY - JOUR
T1 - The Antarium
T2 - A Reconstructed Visual Reality Device for Ant Navigation Research
AU - Kócsi, Zoltán
AU - Murray, Trevor
AU - Dahmen, Hansjürgen
AU - Narendra, Ajay
AU - Zeil, Jochen
N1 - Publisher Copyright:
© Copyright © 2020 Kócsi, Murray, Dahmen, Narendra and Zeil.
PY - 2020/11/10
Y1 - 2020/11/10
N2 - We constructed a large projection device (the Antarium) with 20,000 UV-Blue-Green LEDs that allows us to present tethered ants with views of their natural foraging environment. The ants walk on an air-cushioned trackball, their movements are registered and can be fed back to the visual panorama. Views are generated in a 3D model of the ants’ environment so that they experience the changing visual world in the same way as they do when foraging naturally. The Antarium is a biscribed pentakis dodecahedron with 55 facets of identical isosceles triangles. The length of the base of the triangles is 368 mm resulting in a device that is roughly 1 m in diameter. Each triangle contains 361 blue/green LEDs and nine UV LEDs. The 55 triangles of the Antarium have 19,855 Green and Blue pixels and 495 UV pixels, covering 360° azimuth and elevation from −50° below the horizon to +90° above the horizon. The angular resolution is 1.5° for Green and Blue LEDs and 6.7° for UV LEDs, offering 65,536 intensity levels at a flicker frequency of more than 9,000 Hz and a framerate of 190 fps. Also, the direction and degree of polarisation of the UV LEDs can be adjusted through polarisers mounted on the axles of rotary actuators. We build 3D models of the natural foraging environment of ants using purely camera-based methods. We reconstruct panoramic scenes at any point within these models, by projecting panoramic images onto six virtual cameras which capture a cube-map of images to be projected by the LEDs of the Antarium. The Antarium is a unique instrument to investigate visual navigation in ants. In an open loop, it allows us to provide ants with familiar and unfamiliar views, with completely featureless visual scenes, or with scenes that are altered in spatial or spectral composition. In closed-loop, we can study the behavior of ants that are virtually displaced within their natural foraging environment. In the future, the Antarium can also be used to investigate the dynamics of navigational guidance and the neurophysiological basis of ant navigation in natural visual environments.
AB - We constructed a large projection device (the Antarium) with 20,000 UV-Blue-Green LEDs that allows us to present tethered ants with views of their natural foraging environment. The ants walk on an air-cushioned trackball, their movements are registered and can be fed back to the visual panorama. Views are generated in a 3D model of the ants’ environment so that they experience the changing visual world in the same way as they do when foraging naturally. The Antarium is a biscribed pentakis dodecahedron with 55 facets of identical isosceles triangles. The length of the base of the triangles is 368 mm resulting in a device that is roughly 1 m in diameter. Each triangle contains 361 blue/green LEDs and nine UV LEDs. The 55 triangles of the Antarium have 19,855 Green and Blue pixels and 495 UV pixels, covering 360° azimuth and elevation from −50° below the horizon to +90° above the horizon. The angular resolution is 1.5° for Green and Blue LEDs and 6.7° for UV LEDs, offering 65,536 intensity levels at a flicker frequency of more than 9,000 Hz and a framerate of 190 fps. Also, the direction and degree of polarisation of the UV LEDs can be adjusted through polarisers mounted on the axles of rotary actuators. We build 3D models of the natural foraging environment of ants using purely camera-based methods. We reconstruct panoramic scenes at any point within these models, by projecting panoramic images onto six virtual cameras which capture a cube-map of images to be projected by the LEDs of the Antarium. The Antarium is a unique instrument to investigate visual navigation in ants. In an open loop, it allows us to provide ants with familiar and unfamiliar views, with completely featureless visual scenes, or with scenes that are altered in spatial or spectral composition. In closed-loop, we can study the behavior of ants that are virtually displaced within their natural foraging environment. In the future, the Antarium can also be used to investigate the dynamics of navigational guidance and the neurophysiological basis of ant navigation in natural visual environments.
KW - LED arena
KW - ants
KW - reconstructed visual reality
KW - virtual reality
KW - visual navigation
UR - http://www.scopus.com/inward/record.url?scp=85096657791&partnerID=8YFLogxK
U2 - 10.3389/fnbeh.2020.599374
DO - 10.3389/fnbeh.2020.599374
M3 - Article
SN - 1662-5153
VL - 14
JO - Frontiers in Behavioral Neuroscience
JF - Frontiers in Behavioral Neuroscience
M1 - 599374
ER -