TY - GEN
T1 - The biodiversity and climate change virtual laboratory
T2 - 21st International Congress on Modelling and Simulation: Partnering with Industry and the Community for Innovation and Impact through Modelling, MODSIM 2015 - Held jointly with the 23rd National Conference of the Australian Society for Operations Research and the DSTO led Defence Operations Research Symposium, DORS 2015
AU - Hallgren, Willow
AU - Beaumont, Linda
AU - Bowness, Andrew
AU - Chambers, Lynda
AU - Graham, Erin
AU - Holewa, Hamish
AU - Laffan, Shawn
AU - Mackey, Brendan
AU - Nix, Henry
AU - Price, Jeff
AU - Vanderwal, Jeremy
AU - Warren, Rachel
AU - Weis, Gerhard
N1 - Publisher Copyright:
© 2020 Proceedings - 21st International Congress on Modelling and Simulation, MODSIM 2015. All rights reserved.
PY - 2015
Y1 - 2015
N2 - Advances in computing power and infrastructure, increases in the number and size of ecological and environmental datasets, and the number and type of data collection methods, are revolutionizing the field of Ecology. To integrate these advances, virtual laboratories offer a unique tool to facilitate, expedite, and accelerate research into the impacts of climate change on biodiversity. We introduce the uniquely cloud-based Biodiversity and Climate Change Virtual Laboratory (BCCVL), which provides access to numerous species distribution modelling tools; a large and growing collection of biological, climate, and other environmental datasets, as well as a variety of experiment types to conduct research into the impact of climate change on biodiversity. Users can upload and share datasets, potentially increasing collaboration and cross-fertilisation of ideas and innovation among the user community. Feedback confirms that the BCCVL's goals of lowering the technical requirements for species distribution modelling, and reducing time spent on such research, are being met. We present a case study that illustrates the utility of the BCCVL as a research tool that can be applied to the problem of vector borne diseases and the likelihood of climate change altering their future distribution across Australia. This case study presents the preliminary results of an ensemble modelling experiment which employs multiple (15) different species distribution modelling algorithms to model the distribution of one of the main mosquito vectors of the most common vector borne disease in Australia: Ross River Virus (RRV). We use the BCCVL to do future projection of these models with future climates based on two extreme emissions scenarios, for multiple years. Our results show a large range in both the modelled current distribution, and projected future distribution, of the mosquito species studied. Most models (that were built using different algorithms) show somewhat similar current distributions of the species however there are three models that are obvious outliers. The projected models show a similar range in the distribution of the species, with some models indicating a fewer areas (and also areas with a lower probability of occurrence in specific areas) where the species is likely to be found under a climate change scenario. However, a majority of models show an expanded distribution, with some areas that have a greater probability of the occurrence of this species; this will provide a more robust indication of future distribution for policy makers and planners, than if just one or a few models had been employed. The economic and human health impact of vector borne diseases underline the importance of scientifically sound projections of the future spread of common disease vectors such as mosquitos under various climate change scenarios. This is because such information is essential for policy-makers to identify vulnerable communities and to better manage outbreaks and potential epidemics of such diseases. The BCCVL has provided the means to effectively and robustly bracket multiple sources of uncertainty in the future spread of RRV: this study focuses on two of these - the future distribution of a primary mosquito vector of the disease under two extreme scenarios of climate change. Research is underway to expand our analysis to take into account more sources of uncertainty: more vector and amplifying host species, emissions scenarios, and future climate projections from a range of different global climate models.
AB - Advances in computing power and infrastructure, increases in the number and size of ecological and environmental datasets, and the number and type of data collection methods, are revolutionizing the field of Ecology. To integrate these advances, virtual laboratories offer a unique tool to facilitate, expedite, and accelerate research into the impacts of climate change on biodiversity. We introduce the uniquely cloud-based Biodiversity and Climate Change Virtual Laboratory (BCCVL), which provides access to numerous species distribution modelling tools; a large and growing collection of biological, climate, and other environmental datasets, as well as a variety of experiment types to conduct research into the impact of climate change on biodiversity. Users can upload and share datasets, potentially increasing collaboration and cross-fertilisation of ideas and innovation among the user community. Feedback confirms that the BCCVL's goals of lowering the technical requirements for species distribution modelling, and reducing time spent on such research, are being met. We present a case study that illustrates the utility of the BCCVL as a research tool that can be applied to the problem of vector borne diseases and the likelihood of climate change altering their future distribution across Australia. This case study presents the preliminary results of an ensemble modelling experiment which employs multiple (15) different species distribution modelling algorithms to model the distribution of one of the main mosquito vectors of the most common vector borne disease in Australia: Ross River Virus (RRV). We use the BCCVL to do future projection of these models with future climates based on two extreme emissions scenarios, for multiple years. Our results show a large range in both the modelled current distribution, and projected future distribution, of the mosquito species studied. Most models (that were built using different algorithms) show somewhat similar current distributions of the species however there are three models that are obvious outliers. The projected models show a similar range in the distribution of the species, with some models indicating a fewer areas (and also areas with a lower probability of occurrence in specific areas) where the species is likely to be found under a climate change scenario. However, a majority of models show an expanded distribution, with some areas that have a greater probability of the occurrence of this species; this will provide a more robust indication of future distribution for policy makers and planners, than if just one or a few models had been employed. The economic and human health impact of vector borne diseases underline the importance of scientifically sound projections of the future spread of common disease vectors such as mosquitos under various climate change scenarios. This is because such information is essential for policy-makers to identify vulnerable communities and to better manage outbreaks and potential epidemics of such diseases. The BCCVL has provided the means to effectively and robustly bracket multiple sources of uncertainty in the future spread of RRV: this study focuses on two of these - the future distribution of a primary mosquito vector of the disease under two extreme scenarios of climate change. Research is underway to expand our analysis to take into account more sources of uncertainty: more vector and amplifying host species, emissions scenarios, and future climate projections from a range of different global climate models.
KW - Biodiversity
KW - Climate change
KW - Species distribution modelling
KW - Virtual laboratory
UR - http://www.scopus.com/inward/record.url?scp=85080954866&partnerID=8YFLogxK
M3 - Conference contribution
T3 - Proceedings - 21st International Congress on Modelling and Simulation, MODSIM 2015
SP - 1448
EP - 1454
BT - Proceedings - 21st International Congress on Modelling and Simulation, MODSIM 2015
A2 - Weber, Tony
A2 - McPhee, Malcolm
A2 - Anderssen, Robert
PB - Modelling and Simulation Society of Australia and New Zealand Inc (MSSANZ)
Y2 - 29 November 2015 through 4 December 2015
ER -