The centrosome protein AKNA regulates neurogenesis via microtubule organization

Germán Camargo Ortega, Sven Falk, Pia A. Johansson, Elise Peyre, Loïc Broix, Sanjeeb Kumar Sahu, William Hirst, Thomas Schlichthaerle, Camino De Juan Romero, Kalina Draganova, Stanislav Vinopal, Kaviya Chinnappa, Anna Gavranovic, Tugay Karakaya, Thomas Steininger, Juliane Merl-Pham, Regina Feederle, Wei Shao, Song Hai Shi, Stefanie M. HauckRalf Jungmann, Frank Bradke, Victor Borrell, Arie Geerlof, Simone Reber, Vijay K. Tiwari, Wieland B. Huttner, Michaela Wilsch-Bräuninger, Laurent Nguyen, Magdalena Götz*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    69 Citations (Scopus)

    Abstract

    The expansion of brain size is accompanied by a relative enlargement of the subventricular zone during development. Epithelial-like neural stem cells divide in the ventricular zone at the ventricles of the embryonic brain, self-renew and generate basal progenitors1 that delaminate and settle in the subventricular zone in enlarged brain regions2. The length of time that cells stay in the subventricular zone is essential for controlling further amplification and fate determination. Here we show that the interphase centrosome protein AKNA has a key role in this process. AKNA localizes at the subdistal appendages of the mother centriole in specific subtypes of neural stem cells, and in almost all basal progenitors. This protein is necessary and sufficient to organize centrosomal microtubules, and promote their nucleation and growth. These features of AKNA are important for mediating the delamination process in the formation of the subventricular zone. Moreover, AKNA regulates the exit from the subventricular zone, which reveals the pivotal role of centrosomal microtubule organization in enabling cells to both enter and remain in the subventricular zone. The epithelial-to-mesenchymal transition is also regulated by AKNA in other epithelial cells, demonstrating its general importance for the control of cell delamination.

    Original languageEnglish
    Pages (from-to)113-117
    Number of pages5
    JournalNature
    Volume567
    Issue number7746
    DOIs
    Publication statusPublished - 7 Mar 2019

    Fingerprint

    Dive into the research topics of 'The centrosome protein AKNA regulates neurogenesis via microtubule organization'. Together they form a unique fingerprint.

    Cite this