TY - JOUR
T1 - The chemical signatures of the first star clusters in the universe
AU - Bland-Hawthorn, Joss
AU - Karlsson, Torgny
AU - Sharma, Sanjib
AU - Krumholz, Mark
AU - Silk, Joe
PY - 2010/9/20
Y1 - 2010/9/20
N2 - The chemical abundance patterns of the oldest stars in the Galaxy are expected to contain residual signatures of the first stars in the early universe. Numerous studies attempt to explain the intrinsic abundance scatter observed in some metal-poor populations in terms of chemical inhomogeneities dispersed throughout the early Galactic medium due to discrete enrichment events. Just how the complex data and models are to be interpreted with respect to "progenitor yields" remains an open question. Here we showthat stochastic chemical evolutionmodels to date have overlooked a crucial fact. Essentially, all stars today are born in highly homogeneous star clusters and it is likely that this was also true at early times. When this ingredient is included, the overall scatter in the abundance plane [Fe/H] versus [X/Fe] (C-space), where X is a nucleosynthetic element, can be much less than derived from earlier models. Moreover, for moderately flat clustermass functions (γ ≲ 2), and/or formass functions with a highmass cutoff (M max ≳ 105M⊙), stars exhibit a high degree of clumping in C-space that can be identified even in relatively small data samples. Since stellar abundances can be modified by mass transfer in close binaries, clustered signatures are essential for deriving the yields of the first supernovae.We present a statistical test to determine whether a given set of observations exhibit such behavior. Our initial work focuses on two dimensions in C-space, but we show that the clustering signal can be greatly enhanced by additional abundance axes. The proposed experiment will be challenging on existing 8-10 m telescopes, but relatively straightforward for a multi-object echelle spectrograph mounted on a 25-40 m telescope.
AB - The chemical abundance patterns of the oldest stars in the Galaxy are expected to contain residual signatures of the first stars in the early universe. Numerous studies attempt to explain the intrinsic abundance scatter observed in some metal-poor populations in terms of chemical inhomogeneities dispersed throughout the early Galactic medium due to discrete enrichment events. Just how the complex data and models are to be interpreted with respect to "progenitor yields" remains an open question. Here we showthat stochastic chemical evolutionmodels to date have overlooked a crucial fact. Essentially, all stars today are born in highly homogeneous star clusters and it is likely that this was also true at early times. When this ingredient is included, the overall scatter in the abundance plane [Fe/H] versus [X/Fe] (C-space), where X is a nucleosynthetic element, can be much less than derived from earlier models. Moreover, for moderately flat clustermass functions (γ ≲ 2), and/or formass functions with a highmass cutoff (M max ≳ 105M⊙), stars exhibit a high degree of clumping in C-space that can be identified even in relatively small data samples. Since stellar abundances can be modified by mass transfer in close binaries, clustered signatures are essential for deriving the yields of the first supernovae.We present a statistical test to determine whether a given set of observations exhibit such behavior. Our initial work focuses on two dimensions in C-space, but we show that the clustering signal can be greatly enhanced by additional abundance axes. The proposed experiment will be challenging on existing 8-10 m telescopes, but relatively straightforward for a multi-object echelle spectrograph mounted on a 25-40 m telescope.
KW - Galaxies: dwarf
KW - Galaxies: star clusters: general
KW - Galaxy: abundances
KW - Galaxy: evolution
KW - Galaxy: formation
UR - http://www.scopus.com/inward/record.url?scp=78149233682&partnerID=8YFLogxK
U2 - 10.1088/0004-637X/721/1/582
DO - 10.1088/0004-637X/721/1/582
M3 - Article
SN - 0004-637X
VL - 721
SP - 582
EP - 596
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
ER -