TY - JOUR
T1 - The clear-sky downwelling long-wave radiation at the surface in current and future climates
AU - Shakespeare, Callum J.
AU - Roderick, Michael L.
N1 - Publisher Copyright:
© 2021 Royal Meteorological Society
PY - 2021/10/1
Y1 - 2021/10/1
N2 - Downwelling long-wave radiation is a crucial component of the energy balance of the land and ocean surface. Here we develop a semi-analytic model for the downwelling long-wave dependent on five governing parameters: the near-surface air temperature, the near-surface specific humidity, the surface air pressure, the e-folding height-scale of water vapour, and the CO (Formula presented.) concentration. The model predicts the hourly clear-sky long-wave in the ERA5 reanalysis product with a global mean error of 8.2 W (Formula presented.) m (Formula presented.), and on average captures 97% of the temporal variation at individual locations. We show that the model may be used to calculate clear-sky downwelling long-wave from only surface observations of temperature and humidity by using the time-mean water vapour height-scale from the ERA5, interpolated to the location of the observation. Using this method replicates sub-hourly observations from individual sites having a range of climates with errors of 12–25 W (Formula presented.) m (Formula presented.). Furthermore, the inclusion of CO (Formula presented.) allows the model to be used to study changes in downwelling long-wave at the surface as CO (Formula presented.) concentrations vary. We validate the model's representation of CO (Formula presented.) by comparison with five CMIP5 climate models. Our model thus provides a simple yet accurate framework to understand the key parameters controlling downwelling long-wave and its variability in the current and future climates.
AB - Downwelling long-wave radiation is a crucial component of the energy balance of the land and ocean surface. Here we develop a semi-analytic model for the downwelling long-wave dependent on five governing parameters: the near-surface air temperature, the near-surface specific humidity, the surface air pressure, the e-folding height-scale of water vapour, and the CO (Formula presented.) concentration. The model predicts the hourly clear-sky long-wave in the ERA5 reanalysis product with a global mean error of 8.2 W (Formula presented.) m (Formula presented.), and on average captures 97% of the temporal variation at individual locations. We show that the model may be used to calculate clear-sky downwelling long-wave from only surface observations of temperature and humidity by using the time-mean water vapour height-scale from the ERA5, interpolated to the location of the observation. Using this method replicates sub-hourly observations from individual sites having a range of climates with errors of 12–25 W (Formula presented.) m (Formula presented.). Furthermore, the inclusion of CO (Formula presented.) allows the model to be used to study changes in downwelling long-wave at the surface as CO (Formula presented.) concentrations vary. We validate the model's representation of CO (Formula presented.) by comparison with five CMIP5 climate models. Our model thus provides a simple yet accurate framework to understand the key parameters controlling downwelling long-wave and its variability in the current and future climates.
KW - CMIP5
KW - future climate
KW - long-wave radiation
KW - model
KW - surface energy balance
KW - surface observations
UR - http://www.scopus.com/inward/record.url?scp=85116856981&partnerID=8YFLogxK
U2 - 10.1002/qj.4176
DO - 10.1002/qj.4176
M3 - Article
SN - 0035-9009
VL - 147
SP - 4251
EP - 4268
JO - Quarterly Journal of the Royal Meteorological Society
JF - Quarterly Journal of the Royal Meteorological Society
IS - 741
ER -