The dual inhibition of RNA Pol I transcription and PIM kinase as a new therapeutic approach to treat advanced prostate cancer

Richard J. Rebello, Eric Kusnadi, Donald P. Cameron, Helen B. Pearson, Analia Lesmana, Jennifer R. Devlin, Denis Drygin, Ashlee K. Clark, Laura Porter, John Pedersen, Shahneen Sandhu, Gail P. Risbridger, Richard B. Pearson*, Ross D. Hannan, Luc Furic

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    58 Citations (Scopus)

    Abstract

    Purpose: The MYC oncogene is frequently overexpressed in prostate cancer. Upregulation of ribosome biogenesis and function is characteristic of MYC-driven tumors. In addition, PIM kinases activate MYC signaling and mRNA translation in prostate cancer and cooperate with MYC to accelerate tumorigenesis. Here, we investigate the efficacy of a single and dual approach targeting ribosome biogenesis and function to treat prostate cancer. Experimental Design: The inhibition of ribosomalRNA (rRNA) synthesis with CX-5461, a potent, selective, and orally bioavailable inhibitor of RNA polymerase I (Pol I) transcription, has been successfully exploited therapeutically but only in models of hematologic malignancy. CX-5461 and CX-6258, a pan-PIM kinase inhibitor, were tested alone and in combination in prostate cancer cell lines, in Hi-MYC- and PTEN-deficient mouse models and in patient-derived xenografts (PDX) of metastatic tissue obtained from a patient with castration-resistant prostate cancer. Results: CX-5461 inhibited anchorage-independent growth and induced cell-cycle arrest in prostate cancer cell lines at nanomolar concentrations. Oral administration of 50 mg/kg CX-5461 induced TP53 expression and activity and reduced proliferation (MKI67) and invasion (loss of ductal actin) in Hi-MYC tumors, but not in PTEN-null (low MYC) tumors. While 100 mg/kg CX-6258 showed limited effect alone, its combination with CX-5461 further suppressed proliferation and dramatically reduced large invasive lesions in both models. This rational combination strategy significantly inhibited proliferation and induced cell death in PDX of prostate cancer. Conclusions: Our results demonstrate preclinical efficacy of targeting the ribosome at multiple levels and provide a new approach for the treatment of prostate cancer.

    Original languageEnglish
    Pages (from-to)5539-5552
    Number of pages14
    JournalClinical Cancer Research
    Volume22
    Issue number22
    DOIs
    Publication statusPublished - 15 Nov 2016

    Fingerprint

    Dive into the research topics of 'The dual inhibition of RNA Pol I transcription and PIM kinase as a new therapeutic approach to treat advanced prostate cancer'. Together they form a unique fingerprint.

    Cite this