TY - JOUR
T1 - The economic principles of industrial synthetic biology
T2 - Cosmogony, metabolism and commodities
AU - Mackenzie, Adrian
PY - 2013/4
Y1 - 2013/4
N2 - Synthetic biology has been presented as the application of engineering principles to (genomic) biology. But in industrial synthetic biology, alongside the much discussed engineering principles of abstraction, modularity, de-coupling and standardisation, we see many other practices of contextualisation through which engineering projects accrue credibility and realisability. This paper discusses how synthetic biologists working on next-generation biofuels construct an economic calculus for biological forms. As they modify microbes to make fuel from plants, waste gases and sunlight, or introduce new metabolic pathways into organisms, they also create novel stories that link economic and metabolic processes, and they attach new contexts to synthetic biology in various forms ranging from global climate change, peak oil, food security, US foreign policy, through to fashion and diet. Examples drawn from well-known next-generation biofuels companies such as Joule Unlimited, Amyris Technologies, Synthetic Genomics, Solazyme and Aurora Algae illustrate how principles of cosmogonic dreaming, metabolic equivalence and supply chain disruption strain to connect the origins of life on earth, the flux of solar radiation, the optimal metabolic flux in a microbe and the prices of petroleum, palm oil or sugar. This economic calculus both connects engineering practice to a plurality of life forms, and creates a space in which synthetic biology can appear as unprecedented.
AB - Synthetic biology has been presented as the application of engineering principles to (genomic) biology. But in industrial synthetic biology, alongside the much discussed engineering principles of abstraction, modularity, de-coupling and standardisation, we see many other practices of contextualisation through which engineering projects accrue credibility and realisability. This paper discusses how synthetic biologists working on next-generation biofuels construct an economic calculus for biological forms. As they modify microbes to make fuel from plants, waste gases and sunlight, or introduce new metabolic pathways into organisms, they also create novel stories that link economic and metabolic processes, and they attach new contexts to synthetic biology in various forms ranging from global climate change, peak oil, food security, US foreign policy, through to fashion and diet. Examples drawn from well-known next-generation biofuels companies such as Joule Unlimited, Amyris Technologies, Synthetic Genomics, Solazyme and Aurora Algae illustrate how principles of cosmogonic dreaming, metabolic equivalence and supply chain disruption strain to connect the origins of life on earth, the flux of solar radiation, the optimal metabolic flux in a microbe and the prices of petroleum, palm oil or sugar. This economic calculus both connects engineering practice to a plurality of life forms, and creates a space in which synthetic biology can appear as unprecedented.
KW - biofuels
KW - economic calculus
KW - industry
KW - principles
KW - synthetic biology
UR - http://www.scopus.com/inward/record.url?scp=84875939106&partnerID=8YFLogxK
U2 - 10.1080/19378629.2013.764880
DO - 10.1080/19378629.2013.764880
M3 - Article
AN - SCOPUS:84875939106
SN - 1937-8629
VL - 5
SP - 74
EP - 89
JO - Engineering Studies
JF - Engineering Studies
IS - 1
ER -