TY - JOUR
T1 - The Effect of Temperature on the Distribution of Zoonotic Pathogens in Livestock and Wildlife Populations
T2 - A Systematic Review
AU - Becvarik, Zoe A.
AU - Smurthwaite, Kayla S.
AU - Lal, Aparna
N1 - Publisher Copyright:
© 2023 Zoe A. Becvarik et al.
PY - 2023
Y1 - 2023
N2 - Background. Evidence for the impact of climate change on the distribution of zoonoses has largely focussed on the burden in humans and is lacking information on the effect of temperature on nonvectorborne zoonoses that are transmitted indirectly through contaminated environments. We present a systematic literature review on the impact of temperature on the distribution of zoonotic pathogens in mammalian livestock and wildlife populations, with a focus on nonvectorborne zoonoses that can be spread through air, water, food, and soil. Methods. We systematically searched PubMed, Scopus, and Web of Science, as well as grey literature, and screened titles, abstracts, and full text. English, peer-reviewed, and full text studies were included if they: focused on temperature; considered incursion, distributional burden or risk; and focused on a zoonotic pathogen in livestock and/or wildlife populations of mammalian vertebrates that can be transmitted through indirect pathways without a nonmammalian and non-vertebrate intermediate host. Results. Temperature was an important determinant of zoonoses distribution across all 17 studies included in the final review, with 11 studies finding a positive association. The majority of studies focused on parasites (7) and bacteria (9) and were conducted in the northern hemisphere. Two studies provided future climate projections that identified areas of increasing prevalence and expanded risk for pathogens that were already established. However, no studies specifically investigated the risk of zoonotic incursion with increasing temperature. Few studies explored how local variations in temperature and urbanisation interact with distal changes like Arctic warming to affect the distribution and spread of nonvectorborne pathogens through food, water, and soil. Conclusions. The review’s findings point to the value of a One Health approach to biosecurity that builds on the interconnected relationship between human, animal, plant, and environmental health. Such research is urgently needed to inform the prioritisation and risk assessment of zoonoses more comprehensively in a rapidly changing climate.
AB - Background. Evidence for the impact of climate change on the distribution of zoonoses has largely focussed on the burden in humans and is lacking information on the effect of temperature on nonvectorborne zoonoses that are transmitted indirectly through contaminated environments. We present a systematic literature review on the impact of temperature on the distribution of zoonotic pathogens in mammalian livestock and wildlife populations, with a focus on nonvectorborne zoonoses that can be spread through air, water, food, and soil. Methods. We systematically searched PubMed, Scopus, and Web of Science, as well as grey literature, and screened titles, abstracts, and full text. English, peer-reviewed, and full text studies were included if they: focused on temperature; considered incursion, distributional burden or risk; and focused on a zoonotic pathogen in livestock and/or wildlife populations of mammalian vertebrates that can be transmitted through indirect pathways without a nonmammalian and non-vertebrate intermediate host. Results. Temperature was an important determinant of zoonoses distribution across all 17 studies included in the final review, with 11 studies finding a positive association. The majority of studies focused on parasites (7) and bacteria (9) and were conducted in the northern hemisphere. Two studies provided future climate projections that identified areas of increasing prevalence and expanded risk for pathogens that were already established. However, no studies specifically investigated the risk of zoonotic incursion with increasing temperature. Few studies explored how local variations in temperature and urbanisation interact with distal changes like Arctic warming to affect the distribution and spread of nonvectorborne pathogens through food, water, and soil. Conclusions. The review’s findings point to the value of a One Health approach to biosecurity that builds on the interconnected relationship between human, animal, plant, and environmental health. Such research is urgently needed to inform the prioritisation and risk assessment of zoonoses more comprehensively in a rapidly changing climate.
UR - http://www.scopus.com/inward/record.url?scp=85177811893&partnerID=8YFLogxK
U2 - 10.1155/2023/2714539
DO - 10.1155/2023/2714539
M3 - Review article
SN - 1865-1674
VL - 2023
JO - Transboundary and Emerging Diseases
JF - Transboundary and Emerging Diseases
M1 - 2714539
ER -