The F-Functional and Gradient Flows

Ben Andrews*, Christopher Hopper

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

5 Citations (Scopus)

Abstract

After Ricci flow was first introduced, it appeared for many years that there was no variational characterisation of the flow as the gradient flow of a geometric quantity. In particular, Bryant and Hamilton established that the Ricci flow is not the gradient flow of any functional on Met – the space of smooth Riemannian metrics – with respect to the natural L2 inner product (with the exception of the two-dimensional case, where there is indeed such an ‘energy’). Considering the prominent role variational methods have played in geometric analysis, pde’s and mathematical physics, it seemed surprising that such a natural equation as Ricci flow should be an exception. One of the many important contributions Perel’man made was to elucidate a gradient flow structure for the Ricci flow, not on Met but on a larger augmented space. Part of this structure was already implicit in the physics literature [Fri85]. In this chapter we discuss this structure, at the centre of which is Perel’man’s F-functional [Per02]. The analysis will provide the ground work for the proof of a lower bound on injectivity radius at the end of Chap. 11.

Original languageEnglish
Title of host publicationThe Ricci Flow in Riemannian Geometry
Subtitle of host publicationA Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem
PublisherSpringer Verlag
Pages161-171
Number of pages11
ISBN (Print)9783642159664
DOIs
Publication statusPublished - 2011

Publication series

NameLecture Notes in Mathematics
Volume2011
ISSN (Print)0075-8434
ISSN (Electronic)1617-9692

Fingerprint

Dive into the research topics of 'The F-Functional and Gradient Flows'. Together they form a unique fingerprint.

Cite this