The First to Know: How Token Distributions Reveal Hidden Knowledge in Large Vision-Language Models?

Qinyu Zhao*, Ming Xu, Kartik Gupta, Akshay Asthana, Liang Zheng, Stephen Gould

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Large vision-language models (LVLMs), designed to interpret and respond to human instructions, occasionally generate hallucinated or harmful content due to inappropriate instructions. This study uses linear probing to shed light on the hidden knowledge at the output layers of LVLMs. We demonstrate that the logit distributions of the first tokens contain sufficient information to determine whether to respond to the instructions, including recognizing unanswerable visual questions, defending against jailbreaking attacks, and identifying deceptive questions. Such hidden knowledge is gradually lost in logits of subsequent tokens during response generation. Then, we illustrate a simple decoding strategy at the generation of the first token, effectively improving the generated content. In experiments, we find a few interesting insights: First, the CLIP model already contains a strong signal for solving these tasks, which indicates potential bias in the existing datasets. Second, we observe performance improvement by utilizing the first logit distributions on three additional tasks, including indicating uncertainty in math solving, mitigating hallucination, and image classification. Last, with the same training data, simply finetuning LVLMs improves models’ performance but is still inferior to linear probing on these tasks (Our code is available at https://github.com/Qinyu-Allen-Zhao/LVLM-LP).

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2024 - 18th European Conference, Proceedings
EditorsAleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, Gül Varol
PublisherSpringer Science and Business Media Deutschland GmbH
Pages127-142
Number of pages16
ISBN (Print)9783031731945
DOIs
Publication statusPublished - 2025
Event18th European Conference on Computer Vision, ECCV 2024 - Milan, Italy
Duration: 29 Sept 20244 Oct 2024

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume15106 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference18th European Conference on Computer Vision, ECCV 2024
Country/TerritoryItaly
CityMilan
Period29/09/244/10/24

Fingerprint

Dive into the research topics of 'The First to Know: How Token Distributions Reveal Hidden Knowledge in Large Vision-Language Models?'. Together they form a unique fingerprint.

Cite this