The fluctuation theorem

Denis J. Evans*, Debra J. Searles

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    740 Citations (Scopus)

    Abstract

    The question of how reversible microscopic equations of motion can lead to irreversible macroscopic behaviour has been one of the central issues in statistical mechanics for more than a century. The basic issues were known to Gibbs. Boltzmann conducted a very public debate with Loschmidt and others without a satisfactory resolution. In recent decades there has been no real change in the situation. In 1993 we discovered a relation, subsequently known as the Fluctuation Theorem (FT), which gives an analytical expression for the probability of observing Second Law violating dynamical fluctuations in thermostatted dissipative non-equilibrium systems. The relation was derived heuristically and applied to the special case of dissipative non-equilibrium systems subject to constant energy 'thermostatting'. These restrictions meant that the full importance of the Theorem was not immediately apparent. Within a few years, derivations of the Theorem were improved but it has only been in the last few of years that the generality of the Theorem has been appreciated. We now know that the Second Law of Thermo-dynamics can be derived assuming ergodicity at equilibrium, and causality. We take the assumption of causality to be axiomatic. It is causality which ultimately is responsible for breaking time reversal symmetry and which leads to the possibility of irreversible macroscopic behaviour. The Fluctuation Theorem does much more than merely prove that in large systems observed for long periods of time, the Second Law is overwhelmingly likely to be valid. The Fluctuation Theorem quantifies the probability of observing Second Law violations in small systems observed for a short time. Unlike the Boltzmann equation, the FT is completely consistent with Loschmidt's observation that for time reversible dynamics, every dynamical phase space trajectory and its conjugate time reversed 'anti-trajectory', are both solutions of the underlying equations of motion. Indeed the standard proofs of the FT explicitly consider conjugate pairs of phase space trajectories. Quantitative predictions made by the Fluctuation Theorem regarding the probability of Second Law violations have been confirmed experimentally, both using molecular dynamics computer simulation and very recently in laboratory experiments.

    Original languageEnglish
    Pages (from-to)1529-1585
    Number of pages57
    JournalAdvances in Physics
    Volume51
    Issue number7
    DOIs
    Publication statusPublished - Nov 2002

    Fingerprint

    Dive into the research topics of 'The fluctuation theorem'. Together they form a unique fingerprint.

    Cite this