TY - JOUR
T1 - The generation model of particle physics and galactic dark matter
AU - Robson, B. A.
PY - 2013/9
Y1 - 2013/9
N2 - Galactic dark matter is matter hypothesized to account for the discrepancy of the mass of a galaxy determined from its gravitational effects, assuming the validity of Newton's law of universal gravitation, and the mass calculated from the "luminous matter", stars, gas, dust, etc. observed to be contained within the galaxy. The conclusive observation from the rotation curves of spiral galaxies that the mass discrepancy is greater, the larger the distance scales involved implies that either Newton's law of universal gravitation requires modification or considerably more mass (dark matter) is required to be present in each galaxy. Both the modification of Newton's law of gravitation and the hypothesis of the existence of considerable dark matter in a galaxy are discussed. It is shown that the Generation Model (GM) of particle physics, which leads to a modification of Newton's law of gravitation, is found to be essentially equivalent to that of Milgrom's modified Newtonian dynamics (MOND) theory, with the GM providing a physical understanding of the MOND theory. The continuing success of MOND theory in describing the extragalactic mass discrepancy problems constitutes a strong argument against the existence of undetected dark matter haloes, consisting of unknown nonbaryonic matter, surrounding spiral galaxies.
AB - Galactic dark matter is matter hypothesized to account for the discrepancy of the mass of a galaxy determined from its gravitational effects, assuming the validity of Newton's law of universal gravitation, and the mass calculated from the "luminous matter", stars, gas, dust, etc. observed to be contained within the galaxy. The conclusive observation from the rotation curves of spiral galaxies that the mass discrepancy is greater, the larger the distance scales involved implies that either Newton's law of universal gravitation requires modification or considerably more mass (dark matter) is required to be present in each galaxy. Both the modification of Newton's law of gravitation and the hypothesis of the existence of considerable dark matter in a galaxy are discussed. It is shown that the Generation Model (GM) of particle physics, which leads to a modification of Newton's law of gravitation, is found to be essentially equivalent to that of Milgrom's modified Newtonian dynamics (MOND) theory, with the GM providing a physical understanding of the MOND theory. The continuing success of MOND theory in describing the extragalactic mass discrepancy problems constitutes a strong argument against the existence of undetected dark matter haloes, consisting of unknown nonbaryonic matter, surrounding spiral galaxies.
KW - Generation model
KW - MOND theory
KW - dark matter
KW - gravity
KW - spiral galaxies
UR - http://www.scopus.com/inward/record.url?scp=84883649694&partnerID=8YFLogxK
U2 - 10.1142/S0218301313500675
DO - 10.1142/S0218301313500675
M3 - Article
SN - 0218-3013
VL - 22
JO - International Journal of Modern Physics E
JF - International Journal of Modern Physics E
IS - 9
M1 - 1350067
ER -