Abstract
Si nanowires of 80-150 nm and 200-250 nm diameter are pressurized up to 22 GPa using a diamond anvil cell. Raman and x-ray diffraction data were collected during both compression and decompression. Electron microscopy images reveal that the nanowires retain a nanowire-like morphology (after high pressure treatment). On compression, dc-Si was observed to persist at pressures up to 19 GPa compared to ∼11 GPa for bulk-Si. On decompression, the metallic β-Sn phase was found to be more stable for Si nanowires compared with bulk-Si when lowering the pressure and was observed as low as 6 GPa. For the smallest nanowires studied (80-150 nm), predominately a-Si was obtained on decompression, whereas for larger nanowires (200-250 nm), clear evidence for the r8/bc8-Si phase was obtained. We suggest that the small volume of the individual Si nanowires compared with bulk-Si inhibits the nucleation of the r8-Si phase on decompression. This study shows that there is a size dependence in the high pressure behavior of Si nanowires during both compression and decompression.
Original language | English |
---|---|
Article number | 123103 |
Journal | Applied Physics Letters |
Volume | 113 |
Issue number | 12 |
DOIs | |
Publication status | Published - 17 Sept 2018 |