The hippocampal system as the cortical resource manager: A model connectingpsychology, anatomy and physiology

L. Andrew Coward

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    9 Citations (Scopus)

    Abstract

    A model is described in which the hippocampal system functions as resource manager for the neocortex. This model is developed from an architectural concept for the brain as a whole within which the receptive fields of neocortical columns can gradually expand but with some limited exceptions tend not to contract. The definition process for receptive fields is constrained so that they overlap as little as possible, and change as little as possible, but at least a minimum number of columns detect their fields within every sensory input state. Below this minimum, the receptive fields of some columns are expanded slightly until the minimum level is reached. The columns in which this expansion occurs are selected by a competitive process in the hippocampal system that identifies those in which only a relatively small expansion is required, and sends signals to those columns that trigger the expansion. These expansions in receptive fields are the information record that forms the declarative memory of the input state. Episodic memory activates a set of columns in which receptive fields expanded simultaneously at some point in the past, and the hippocampal system is therefore the appropriate source for information guiding access to such memories. Semantic memory associates columns that are often active (with or without expansions in receptive fields) simultaneously. Initially, the hippocampus can guide access to such memories on the basis of initial information recording, but to avoid corruption of the information needed for ongoing resource management, access control shifts to other parts of the neocortex. The roles of the mammillary bodies, amygdala and anterior thalamic nucleus can be understood as modulating information recording in accordance with various behavioral priorities. During sleep, provisional physical connectivity is created that supports receptive field expansions in the subsequent wake period, but previously created memories are not affected. This model matches a wide range of neuropsychological observation better than alternative hippocampalmodels. The information mechanisms required by the model are consistent with known brain anatomy and neuron physiology.

    Original languageEnglish
    Title of host publicationBrain Inspired Cognitive Systems 2008
    EditorsAmir Hussain, Vassilis Cutsuridis, Leslie Smith, Igor Aleksander, Allan Kardec Barros, Ron Chrisley
    Pages315-364
    Number of pages50
    DOIs
    Publication statusPublished - 2010

    Publication series

    NameAdvances in Experimental Medicine and Biology
    Volume657
    ISSN (Print)0065-2598

    Fingerprint

    Dive into the research topics of 'The hippocampal system as the cortical resource manager: A model connectingpsychology, anatomy and physiology'. Together they form a unique fingerprint.

    Cite this