TY - JOUR
T1 - The immunogenicity of dendritic cell-derived exosomes
AU - Quah, Ben J.C.
AU - O'Neill, Helen C.
PY - 2005/9
Y1 - 2005/9
N2 - Exosome production represents an alternate endocytic pathway for secretion. Multivesicular endosomes (MVE) fuse with the plasma membrane expelling internal vesicles or exosomes from cells. Exosome production has been recently described for immune cells including B cells, dendritic cells (DC), mast cells, macrophages and T cells. Exosomes derived from some DC populations stimulate T lymphocyte proliferation in vitro and have potent capacity to generate anti-tumour immune responses in vivo. These reported studies have involved in vitro grown mature DC expanded from precursors with cytokines. However, immature DC produce higher numbers of exosomes than mature DC and this is thought to be due to a reduction in endocytosis as DC mature, associated with reduced reformation of MVE and reduced exosome formation. This lab pioneered a method to generate immature DC in spleen long-term cultures (LTC). DC produced in cultures represent immature myeloid DC, highly endocytic but with weak capacity to stimulate T cells. LTC-DC produce exosomes and contain many MVE. This prompted a study of immunogenic potential with a view to the potential use of exosomes in vaccination and immunotherapy. DC produced in cultures represent immature myeloid DC, highly endocytic but with weak capacity to stimulate T cells. Exosomes were isolated by differential centrifugation from LTC-DC and shown by marker expression to arise by budding from the LAMP-1+ limiting endosomal membrane of MVE. These LTC-derived exosomes appear however to lack immunostimulatory markers like CD86, CD40, MHC-I and MHC-II. While LTC-DC can stimulate antigen-specific proliferation of CD4+ T cells, exosome preparations derived from antigen-pulsed DC were unable to stimulate purified naïve T cells in vitro. They were however found to weakly activate allogeneic CD8+ T cells in vitro. Tumour antigen-pulsed LTC-DC or their exosomes could induce a protective response in mice against growth of a transplanted tumour but could not induce a response to clear an existing tumour. Exosomes derived from immature DC can modulate immune responses, but do not function in direct T cell activation in vitro. Modulation of immune responses by exosomes produced by immature DC may be dependent on the presence of other antigen presenting DC subsets in the animal. The possible function of immature DC and their exosomes in maintenance of tolerance and in the induction of immunity is discussed.
AB - Exosome production represents an alternate endocytic pathway for secretion. Multivesicular endosomes (MVE) fuse with the plasma membrane expelling internal vesicles or exosomes from cells. Exosome production has been recently described for immune cells including B cells, dendritic cells (DC), mast cells, macrophages and T cells. Exosomes derived from some DC populations stimulate T lymphocyte proliferation in vitro and have potent capacity to generate anti-tumour immune responses in vivo. These reported studies have involved in vitro grown mature DC expanded from precursors with cytokines. However, immature DC produce higher numbers of exosomes than mature DC and this is thought to be due to a reduction in endocytosis as DC mature, associated with reduced reformation of MVE and reduced exosome formation. This lab pioneered a method to generate immature DC in spleen long-term cultures (LTC). DC produced in cultures represent immature myeloid DC, highly endocytic but with weak capacity to stimulate T cells. LTC-DC produce exosomes and contain many MVE. This prompted a study of immunogenic potential with a view to the potential use of exosomes in vaccination and immunotherapy. DC produced in cultures represent immature myeloid DC, highly endocytic but with weak capacity to stimulate T cells. Exosomes were isolated by differential centrifugation from LTC-DC and shown by marker expression to arise by budding from the LAMP-1+ limiting endosomal membrane of MVE. These LTC-derived exosomes appear however to lack immunostimulatory markers like CD86, CD40, MHC-I and MHC-II. While LTC-DC can stimulate antigen-specific proliferation of CD4+ T cells, exosome preparations derived from antigen-pulsed DC were unable to stimulate purified naïve T cells in vitro. They were however found to weakly activate allogeneic CD8+ T cells in vitro. Tumour antigen-pulsed LTC-DC or their exosomes could induce a protective response in mice against growth of a transplanted tumour but could not induce a response to clear an existing tumour. Exosomes derived from immature DC can modulate immune responses, but do not function in direct T cell activation in vitro. Modulation of immune responses by exosomes produced by immature DC may be dependent on the presence of other antigen presenting DC subsets in the animal. The possible function of immature DC and their exosomes in maintenance of tolerance and in the induction of immunity is discussed.
KW - Dendritic cells
KW - Exosomes
KW - T cell activation
KW - Tumour immunity
UR - http://www.scopus.com/inward/record.url?scp=24644524982&partnerID=8YFLogxK
U2 - 10.1016/j.bcmd.2005.05.002
DO - 10.1016/j.bcmd.2005.05.002
M3 - Article
SN - 1079-9796
VL - 35
SP - 94
EP - 110
JO - Blood Cells, Molecules, and Diseases
JF - Blood Cells, Molecules, and Diseases
IS - 2
ER -