TY - JOUR
T1 - The Impact of Scaling Rather Than Shaping Attention
T2 - Changes in the Scale of Attention Using Global Motion Inducers Influence Both Spatial and Temporal Acuity
AU - Lawrence, Rebecca K.
AU - Edwards, Mark
AU - Goodhew, Stephanie C.
N1 - Publisher Copyright:
© 2020 American Psychological Association.
PY - 2020
Y1 - 2020
N2 - Originally, the zoom lens model of attention scaling proposed that narrowing attention to a small area of the visual field improves visual perception (Eriksen & St. James, 1986). A large body of empirical evidence supports this model, showing that narrow attention enhances performance in spatial acuity tasks. Despite this, the zoom lens model does not explicitly consider how attention scaling influences different elements of vision, such as temporal processing. More recent models of attention scaling suggest that attentional scaling has different effects on spatial and temporal acuity (Goodhew, Lawrence, & Edwards, 2017; Goodhew, Shen, & Edwards, 2016). However, the evidence to date supporting these models has had one major pitfall: different-sized unfilled shapes are presented to focus attention in or spread it out broadly. This method is problematic because participants may not spread their attention across the entire region defined by unfilled shapes and instead may attend to only the annulus region of the shape. To address this, we developed a new method to manipulate attention-one which requires the pooling of information across the entire stimulus, not just around the outer border. We then tested the influence of attention scaling on perception using spatial and temporal gap tasks. Across 2 experiments, we found that sustaining a narrow attention scale improved both spatial and temporal acuity. These findings challenge recent research suggesting that attention scaling has differential impacts on spatial and temporal processing and instead support the zoom lens model that was proposed over 30 years ago.
AB - Originally, the zoom lens model of attention scaling proposed that narrowing attention to a small area of the visual field improves visual perception (Eriksen & St. James, 1986). A large body of empirical evidence supports this model, showing that narrow attention enhances performance in spatial acuity tasks. Despite this, the zoom lens model does not explicitly consider how attention scaling influences different elements of vision, such as temporal processing. More recent models of attention scaling suggest that attentional scaling has different effects on spatial and temporal acuity (Goodhew, Lawrence, & Edwards, 2017; Goodhew, Shen, & Edwards, 2016). However, the evidence to date supporting these models has had one major pitfall: different-sized unfilled shapes are presented to focus attention in or spread it out broadly. This method is problematic because participants may not spread their attention across the entire region defined by unfilled shapes and instead may attend to only the annulus region of the shape. To address this, we developed a new method to manipulate attention-one which requires the pooling of information across the entire stimulus, not just around the outer border. We then tested the influence of attention scaling on perception using spatial and temporal gap tasks. Across 2 experiments, we found that sustaining a narrow attention scale improved both spatial and temporal acuity. These findings challenge recent research suggesting that attention scaling has differential impacts on spatial and temporal processing and instead support the zoom lens model that was proposed over 30 years ago.
KW - Spatial attention
KW - Vision
KW - Visual attention
KW - Zoom lens model
UR - http://www.scopus.com/inward/record.url?scp=85077572400&partnerID=8YFLogxK
U2 - 10.1037/xhp0000708
DO - 10.1037/xhp0000708
M3 - Article
SN - 0096-1523
JO - Journal of Experimental Psychology: Human Perception and Performance
JF - Journal of Experimental Psychology: Human Perception and Performance
ER -