The influence of micro-topography and external bioerosion on coral-reef-building organisms: recruitment, community composition and carbonate production over time

Jennie Mallela*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    16 Citations (Scopus)

    Abstract

    The continued health and function of tropical coral reefs is highly dependent on the ability of reef-building organisms to build large, complex, three-dimensional structures that continue to accrete and evolve over time. The recent deterioration of reef health globally, including loss of coral cover, has resulted in significant declines in architectural complexity at a large, reef-scape scale. Interestingly, the fine-scale role of micro-structure in initiating and facilitating future reef development and calcium carbonate production has largely been overlooked. In this study, experimental substrates with and without micro-ridges were deployed in the lagoon at One Tree Island for 34 months. This study assessed how the presence or absence of micro-ridges promoted recruitment by key reef-building sclerobionts (corals and encrusters) and their subsequent development at micro (mm) and macro (cm) scales. Experimental plates were examined after 11 and 34 months to assess whether long-term successional and calcification processes on different micro-topographies led to convergent or divergent communities over time. Sclerobionts were most prevalent in micro-grooves when they were available. Interestingly, in shallow lagoon reef sites characterised by shoals of small parrotfish and low urchin abundance, flat substrates were also successfully recruited to. Mean rates of carbonate production were 374 ± 154 (SD) g CaCO3 m−2 yr−1 within the lagoon. Substrates with micro-ridges were characterised by significantly greater rates of carbonate production than smooth substrates. The orientation of the substrate and period of immersion also significantly impacted rates of carbonate production, with CaCO3 on cryptic tiles increasing by 28% between 11 and 34 months. In contrast, rates on exposed tiles declined by 35% over the same time. In conclusion, even at sites characterised by small-sized parrotfish and low urchin density, micro-topography is an important settlement niche clearly favouring sclerobiont early life-history processes and subsequent carbonate production.

    Original languageEnglish
    Pages (from-to)227-237
    Number of pages11
    JournalCoral Reefs
    Volume37
    Issue number1
    DOIs
    Publication statusPublished - 1 Mar 2018

    Fingerprint

    Dive into the research topics of 'The influence of micro-topography and external bioerosion on coral-reef-building organisms: recruitment, community composition and carbonate production over time'. Together they form a unique fingerprint.

    Cite this