The interstellar medium: The key component in galactic evolution and modern cosmology

Carl Heiles, Di Li, Naomi McClure-Griffiths, Lei Qian, Shu Liu

    Research output: Contribution to journalArticlepeer-review

    5 Citations (Scopus)

    Abstract

    The gases of the interstellar medium (ISM) possess orders of magnitude more mass than those of all the stars combined and are thus the prime component of the baryonic Universe. With L-band surface sensitivity even better than the planned phase one of the Square Kilometre Array (SKA1), the Five-hundred-meter Aperture Spherical radio Telescope (FAST) promises unprecedented insights into two of the primary components of ISM, namely, atomic hydrogen (HI) and the hydroxyl molecule (OH). Here, we discuss the evolving landscape of our understanding of ISM, particularly, its complex phases, the magnetic fields within, the so-called dark molecular gas (DMG), high velocity clouds and the connection between local and distant ISM. We lay out, in broad strokes, several expected FAST projects, including an all northern-sky high-resolution HI survey (22 000 deg 2 , 3′ FWHM beam, 0.2 km s -1 ), targeted OH mapping, searching for absorption and maser signals, etc. Currently under commissioning, the commensal observing mode of FAST will be capable of simultaneously obtaining HI and pulsar data streams, making large-scale surveys in both science areas more efficient.

    Original languageEnglish
    Article number017
    JournalResearch in Astronomy and Astrophysics
    Volume19
    Issue number2
    DOIs
    Publication statusPublished - Feb 2019

    Fingerprint

    Dive into the research topics of 'The interstellar medium: The key component in galactic evolution and modern cosmology'. Together they form a unique fingerprint.

    Cite this