TY - JOUR
T1 - The K2 Galactic Archaeology Program
T2 - Overview, target selection, and survey properties
AU - Sharma, Sanjib
AU - Stello, Dennis
AU - Zinn, Joel C.
AU - Reyes, Claudia
AU - Hon, Marc
AU - Bland-Hawthorn, Joss
N1 - Publisher Copyright:
© 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.
PY - 2022/12/1
Y1 - 2022/12/1
N2 - K2 was a community-driven NASA mission where all targets were proposed through guest observer programmes. Here we provide an overview of one of the largest of these endeavours, the K2 Galactic Archaeology Programme (K2GAP), with about 25 per cent of the observed targets being allocated to this programme. K2GAP provides asteroseismic parameters for about 23 000 giant stars across the Galaxy, which together with spectroscopic stellar parameters can give age and masses of stars. We discuss in detail the target selection procedure and provide a python program that implements the selection function (github.com/sanjibs/k2gap). Broadly speaking, the targets were selected on 2MASS colour J - Ks > 0.5, with finely tuned adjustments for each campaign. We discuss the detection completeness of the asteroseismic parameters νmax and Δν. About 14 per cent of giants were found to miss νmax detections and it was difficult to detect Δν for RC stars. Making use of the selection function, we compare the observed distribution of asteroseismic masses to theoretical predictions. The median asteroseismic mass is higher by about 4 per cent compared to predictions. We provide a selection-function-matched mock catalogue of stars based on a synthetic model of the Galaxy for the community to use in subsequent analyses of the K2GAP data set (physics.usyd.edu.au/k2gap/download/).
AB - K2 was a community-driven NASA mission where all targets were proposed through guest observer programmes. Here we provide an overview of one of the largest of these endeavours, the K2 Galactic Archaeology Programme (K2GAP), with about 25 per cent of the observed targets being allocated to this programme. K2GAP provides asteroseismic parameters for about 23 000 giant stars across the Galaxy, which together with spectroscopic stellar parameters can give age and masses of stars. We discuss in detail the target selection procedure and provide a python program that implements the selection function (github.com/sanjibs/k2gap). Broadly speaking, the targets were selected on 2MASS colour J - Ks > 0.5, with finely tuned adjustments for each campaign. We discuss the detection completeness of the asteroseismic parameters νmax and Δν. About 14 per cent of giants were found to miss νmax detections and it was difficult to detect Δν for RC stars. Making use of the selection function, we compare the observed distribution of asteroseismic masses to theoretical predictions. The median asteroseismic mass is higher by about 4 per cent compared to predictions. We provide a selection-function-matched mock catalogue of stars based on a synthetic model of the Galaxy for the community to use in subsequent analyses of the K2GAP data set (physics.usyd.edu.au/k2gap/download/).
KW - Galaxy: disc
KW - Galaxy: evolution
KW - Galaxy: formation
KW - Galaxy: kinematics and dynamics
KW - stars: oscillations
UR - http://www.scopus.com/inward/record.url?scp=85145354770&partnerID=8YFLogxK
U2 - 10.1093/mnras/stac2031
DO - 10.1093/mnras/stac2031
M3 - Article
AN - SCOPUS:85145354770
SN - 0035-8711
VL - 517
SP - 1970
EP - 1987
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 2
ER -