Abstract
We present an analysis of DES17X1boj and DES16E2bjy, two peculiar transients discovered by the Dark Energy Survey (DES). They exhibit nearly identical double-peaked light curves that reach very different maximum luminosities (Mr = -15.4 and -17.9, respectively). The light-curve evolution of these events is highly atypical and has not been reported before. The transients are found in different host environments: DES17X1boj was found near the nucleus of a spiral galaxy, while DES16E2bjy is located in the outskirts of a passive red galaxy. Early photometric data are well fitted with a blackbody and the resulting moderate photospheric expansion velocities (1800 km s-1 for DES17X1boj and 4800 km s-1 for DES16E2bjy) suggest an explosive or eruptive origin. Additionally, a feature identified as high-velocity Ca ii absorption (v ≈ 9400 km s-1) in the near-peak spectrum of DES17X1boj may imply that it is a supernova. While similar light-curve evolution suggests a similar physical origin for these two transients, we are not able to identify or characterize the progenitors.
Original language | English |
---|---|
Pages (from-to) | 5576-5589 |
Number of pages | 14 |
Journal | Monthly Notices of the Royal Astronomical Society |
Volume | 494 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1 Jun 2020 |