Abstract
Separate nucleation and growth processes of carbon nanotubes were found in a mechano-thermal method in which carbon nanotubes are produced by first mechanical milling of graphite powder at room temperature and subsequent thermal annealing up to 1400 °C. The ball-milled graphite contains nucleation structures (nanosized metal particles and deformed (0 0 2) layers containing pentagons), and disordered carbon as a free carbon atom source. The subsequent annealing activates the growth of two types of multi-walled nanotubes in the absence of carbon vapor. Thin nanotubes (diameter <20 nm) are formed via crystallization of the disordered carbon with the preferred formation of the (0 0 2) basal planes. Thick nanotubes (diameter >20 nm) are formed through a metal catalytic solution-precipitation process (solid-liquid-solid). In both cases, carbon nanotubes grew out from disordered carbon particles with closed tips.
Original language | English |
---|---|
Pages (from-to) | 1543-1548 |
Number of pages | 6 |
Journal | Carbon |
Volume | 42 |
Issue number | 8-9 |
DOIs | |
Publication status | Published - 2004 |