TY - JOUR
T1 - The remarkable solar twin HIP 56948
T2 - A prime target in the quest for other Earths
AU - Meléndez, J.
AU - Bergemann, M.
AU - Cohen, J. G.
AU - Endl, M.
AU - Karakas, A. I.
AU - Ramírez, I.
AU - Cochran, W. D.
AU - Yong, D.
AU - MacQueen, P. J.
AU - Kobayashi, C.
AU - Asplund, M.
PY - 2012
Y1 - 2012
N2 - Context. The Sun shows abundance anomalies relative to most solar twins. If the abundance peculiarities are due to the formation of inner rocky planets, that would mean that only a small fraction of solar type stars may host terrestrial planets. Aims. In this work we study HIP 56948, the best solar twin known to date, to determine with an unparalleled precision how similar it is to the Sun in its physical properties, chemical composition and planet architecture. We explore whether the abundances anomalies may be due to pollution from stellar ejecta or to terrestrial planet formation. Methods. We perform a differential abundance analysis (both in LTE and NLTE) using high resolution (R ∼ 100 000) high S/N (600-650) Keck HIRES spectra of the Sun (as reflected from the asteroid Ceres) and HIP 56948. We use precise radial velocity data from the McDonald and Keck observatories to search for planets around this star. Results. We achieve a precision of σ 0.003 dex for several elements. Including errors in stellar parameters the total uncertainty is as low as σ ≈ 0.005 dex (1%), which is unprecedented in elemental abundance studies. The similarities between HIP 56948 and the Sun are astonishing. HIP 56948 is only 17 ± 7 K hotter than the Sun, and log g, [Fe/H] and microturbulence velocity are only + 0.02 ± 0.02 dex, +0.02 ± 0.01 dex and +0.01 ± 0.01 km s -1 higher than solar, respectively. Our precise stellar parameters and a differential isochrone analysis shows that HIP 56948 has a mass of 1.02 ± 0.02 M · and that it is ∼1 Gyr younger than the Sun, as constrained by isochrones, chromospheric activity, Li and rotation. Both stars show a chemical abundance pattern that differs from most solar twins, but the refractory elements (those with condensation temperature T cond 1000 K) are slightly (∼0.01 dex) more depleted in the Sun than in HIP 56948. The trend with T cond in differential abundances (twins-HIP 56948) can be reproduced very well by adding ∼3 M · of a mix of Earth and meteoritic material, to the convection zone of HIP 56948. The element-to-element scatter of the Earth/meteoritic mix for the case of hypothetical rocky planets around HIP 56948 is only 0.0047 dex. From our radial velocity monitoring we find no indications of giant planets interior to or within the habitable zone of HIP 56948. Conclusions. We conclude that HIP 56948 is an excellent candidate to host a planetary system like our own, including the possible presence of inner terrestrial planets. Its striking similarity to the Sun and its mature age makes HIP 56948 a prime target in the quest for other Earths and SETI endeavors.
AB - Context. The Sun shows abundance anomalies relative to most solar twins. If the abundance peculiarities are due to the formation of inner rocky planets, that would mean that only a small fraction of solar type stars may host terrestrial planets. Aims. In this work we study HIP 56948, the best solar twin known to date, to determine with an unparalleled precision how similar it is to the Sun in its physical properties, chemical composition and planet architecture. We explore whether the abundances anomalies may be due to pollution from stellar ejecta or to terrestrial planet formation. Methods. We perform a differential abundance analysis (both in LTE and NLTE) using high resolution (R ∼ 100 000) high S/N (600-650) Keck HIRES spectra of the Sun (as reflected from the asteroid Ceres) and HIP 56948. We use precise radial velocity data from the McDonald and Keck observatories to search for planets around this star. Results. We achieve a precision of σ 0.003 dex for several elements. Including errors in stellar parameters the total uncertainty is as low as σ ≈ 0.005 dex (1%), which is unprecedented in elemental abundance studies. The similarities between HIP 56948 and the Sun are astonishing. HIP 56948 is only 17 ± 7 K hotter than the Sun, and log g, [Fe/H] and microturbulence velocity are only + 0.02 ± 0.02 dex, +0.02 ± 0.01 dex and +0.01 ± 0.01 km s -1 higher than solar, respectively. Our precise stellar parameters and a differential isochrone analysis shows that HIP 56948 has a mass of 1.02 ± 0.02 M · and that it is ∼1 Gyr younger than the Sun, as constrained by isochrones, chromospheric activity, Li and rotation. Both stars show a chemical abundance pattern that differs from most solar twins, but the refractory elements (those with condensation temperature T cond 1000 K) are slightly (∼0.01 dex) more depleted in the Sun than in HIP 56948. The trend with T cond in differential abundances (twins-HIP 56948) can be reproduced very well by adding ∼3 M · of a mix of Earth and meteoritic material, to the convection zone of HIP 56948. The element-to-element scatter of the Earth/meteoritic mix for the case of hypothetical rocky planets around HIP 56948 is only 0.0047 dex. From our radial velocity monitoring we find no indications of giant planets interior to or within the habitable zone of HIP 56948. Conclusions. We conclude that HIP 56948 is an excellent candidate to host a planetary system like our own, including the possible presence of inner terrestrial planets. Its striking similarity to the Sun and its mature age makes HIP 56948 a prime target in the quest for other Earths and SETI endeavors.
KW - Earth
KW - Meteorites meteors meteoroids
KW - Planet-star interactions
KW - Stars: abundances
KW - Stars: fundamental parameters
KW - Sun: abundances
UR - http://www.scopus.com/inward/record.url?scp=84862653639&partnerID=8YFLogxK
U2 - 10.1051/0004-6361/201117222
DO - 10.1051/0004-6361/201117222
M3 - Article
SN - 0004-6361
VL - 543
JO - Astronomy and Astrophysics
JF - Astronomy and Astrophysics
M1 - A29
ER -