TY - JOUR
T1 - The Rhizobium leguminosarum biovar trifolii ANU794 induces novel developmental responses on the subterranean clover cultivar Woogenellup
AU - Morris, Angela Carmen
AU - Djordjevic, Michael Anthony
PY - 2006/5
Y1 - 2006/5
N2 - The clover-nodulating Rhizobium leguminosarum bv. trifolii ANU794 initiates normal root-nodule development with abnormally low efficiency on the Trifolium subterraneum cv. Woogenellup. The cellular and developmental responses of Woogenellup roots to the site- and dose-defined inoculation of green fluorescent protein (g/p)-labeled cells of ANU843 (nodulation proficient) and ANU794 was investigated using light, fluorescence, and confocal microscopy. Strain ANU794-gfp induced three primordia types and four developmental responses at the inoculation site: true or aberrant nodules (on 5 and 25% of plants, respectively), hybrid structures (20% of plants), or lateral roots (50% of plants). The novel hybrid structures possessed nodule and lateral root-like features and unusual vascular patterning. Strain ANU794-gfp induces lateral root formation by stimulating pericycle cell divisions at all nearby protoxylem poles. Only true nodules induced by ANU794-gfp contained intracellular bacteria. In contrast, strain ANU843-gfp in duced nodules only and lateral root formation was suppressed at spot inoculation sites. Primordium types were distinguishable by the emission spectrum characteristics of phenolic UV-absorbing and fluorescent compounds that accumulate in primordium cells. Hybrid primordia contained (at least) two fluorescent cell populations, suggesting that they are chimeric. The results suggest that ANU794 may produce both nodule- and lateral root-generating signals simultaneously.
AB - The clover-nodulating Rhizobium leguminosarum bv. trifolii ANU794 initiates normal root-nodule development with abnormally low efficiency on the Trifolium subterraneum cv. Woogenellup. The cellular and developmental responses of Woogenellup roots to the site- and dose-defined inoculation of green fluorescent protein (g/p)-labeled cells of ANU843 (nodulation proficient) and ANU794 was investigated using light, fluorescence, and confocal microscopy. Strain ANU794-gfp induced three primordia types and four developmental responses at the inoculation site: true or aberrant nodules (on 5 and 25% of plants, respectively), hybrid structures (20% of plants), or lateral roots (50% of plants). The novel hybrid structures possessed nodule and lateral root-like features and unusual vascular patterning. Strain ANU794-gfp induces lateral root formation by stimulating pericycle cell divisions at all nearby protoxylem poles. Only true nodules induced by ANU794-gfp contained intracellular bacteria. In contrast, strain ANU843-gfp in duced nodules only and lateral root formation was suppressed at spot inoculation sites. Primordium types were distinguishable by the emission spectrum characteristics of phenolic UV-absorbing and fluorescent compounds that accumulate in primordium cells. Hybrid primordia contained (at least) two fluorescent cell populations, suggesting that they are chimeric. The results suggest that ANU794 may produce both nodule- and lateral root-generating signals simultaneously.
KW - Cultivar specificity
KW - Flavonoids
KW - Founder cells
KW - Nod factor
KW - Nonheme chloroperoxidase
KW - Stem cells
UR - http://www.scopus.com/inward/record.url?scp=33646351542&partnerID=8YFLogxK
U2 - 10.1094/MPMI-19-0471
DO - 10.1094/MPMI-19-0471
M3 - Article
SN - 0894-0282
VL - 19
SP - 471
EP - 479
JO - Molecular Plant-Microbe Interactions
JF - Molecular Plant-Microbe Interactions
IS - 5
ER -