TY - JOUR
T1 - The role of oxidative stress in postcopulatory selection
T2 - OS and sperm
AU - Friesen, Christopher R.
AU - Noble, Daniel W.A.
AU - Olsson, Mats
N1 - Publisher Copyright:
© 2020 The Author(s).
PY - 2020/12/7
Y1 - 2020/12/7
N2 - Two decades ago, von Schantz et al. (von Schantz T, Bensch S, Grahn M, Hasselquist D, Wittzell H. 1999 Good genes, oxidative stress and condition-dependent sexual signals. Proc. R. Soc. B 266, 1-12. (doi:10.1098/rspb.1999.0597)) united oxidative stress (OS) biology with sexual selection and life-history theory. This set the scene for analysis of how evolutionary trade-offs may be mediated by the increase in reactive molecules resulting from metabolic processes at reproduction. Despite 30 years of research on OS effects on infertility in humans, one research area that has been left behind in this integration of evolution and OS biology is postcopulatory sexual selection-this integration is long overdue. We review the basic mechanisms in OS biology, why mitochondria are the primary source of ROS and ATP production during oxidative metabolism, and why sperm, and its performance, is uniquely susceptible to OS. We also review how postcopulatory processes select for antioxidation in seminal fluids to counter OS and the implications of the net outcome of these processes on sperm damage, sperm storage, and female and oocyte manipulation of sperm metabolism and repair of DNA to enhance offspring fitness. This article is part of the theme issue 'Fifty years of sperm competition'.
AB - Two decades ago, von Schantz et al. (von Schantz T, Bensch S, Grahn M, Hasselquist D, Wittzell H. 1999 Good genes, oxidative stress and condition-dependent sexual signals. Proc. R. Soc. B 266, 1-12. (doi:10.1098/rspb.1999.0597)) united oxidative stress (OS) biology with sexual selection and life-history theory. This set the scene for analysis of how evolutionary trade-offs may be mediated by the increase in reactive molecules resulting from metabolic processes at reproduction. Despite 30 years of research on OS effects on infertility in humans, one research area that has been left behind in this integration of evolution and OS biology is postcopulatory sexual selection-this integration is long overdue. We review the basic mechanisms in OS biology, why mitochondria are the primary source of ROS and ATP production during oxidative metabolism, and why sperm, and its performance, is uniquely susceptible to OS. We also review how postcopulatory processes select for antioxidation in seminal fluids to counter OS and the implications of the net outcome of these processes on sperm damage, sperm storage, and female and oocyte manipulation of sperm metabolism and repair of DNA to enhance offspring fitness. This article is part of the theme issue 'Fifty years of sperm competition'.
KW - ROS
KW - antioxidation
KW - haploid selection
KW - oocytes
KW - oxidative stress
KW - spermatozoa
UR - http://www.scopus.com/inward/record.url?scp=85093642828&partnerID=8YFLogxK
U2 - 10.1098/rstb.2020.0065
DO - 10.1098/rstb.2020.0065
M3 - Review article
SN - 0962-8436
VL - 375
JO - Philosophical Transactions of the Royal Society B: Biological Sciences
JF - Philosophical Transactions of the Royal Society B: Biological Sciences
IS - 1813
M1 - 20200065
ER -