TY - JOUR
T1 - The role of the reef flat in coral reef trophodynamics
T2 - Past, present, and future
AU - Bellwood, David R.
AU - Tebbett, Sterling B.
AU - Bellwood, Orpha
AU - Mihalitsis, Michalis
AU - Morais, Renato A.
AU - Streit, Robert P.
AU - Fulton, Christopher J.
N1 - Publisher Copyright:
© 2018 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
PY - 2018/4
Y1 - 2018/4
N2 - The reef flat is one of the largest and most distinctive habitats on coral reefs, yet its role in reef trophodynamics is poorly understood. Evolutionary evidence suggests that reef flat colonization by grazing fishes was a major innovation that permitted the exploitation of new space and trophic resources. However, the reef flat is hydrodynamically challenging, subject to high predation risks and covered with sediments that inhibit feeding by grazers. To explore these opposing influences, we examine the Great Barrier Reef (GBR) as a model system. We focus on grazing herbivores that directly access algal primary productivity in the epilithic algal matrix (EAM). By assessing abundance, biomass, and potential fish productivity, we explore the potential of the reef flat to support key ecosystem processes and its ability to maintain fisheries yields. On the GBR, the reef flat is, by far, the most important habitat for turf-grazing fishes, supporting an estimated 79% of individuals and 58% of the total biomass of grazing surgeonfishes, parrotfishes, and rabbitfishes. Approximately 59% of all (reef-wide) turf algal productivity is removed by reef flat grazers. The flat also supports approximately 75% of all grazer biomass growth. Our results highlight the evolutionary and ecological benefits of occupying shallow-water habitats (permitting a ninefold population increase). The acquisition of key locomotor and feeding traits has enabled fishes to access the trophic benefits of the reef flat, outweighing the costs imposed by water movement, predation, and sediments. Benthic assemblages on reefs in the future may increasingly resemble those seen on reef flats today, with low coral cover, limited topographic complexity, and extensive EAM. Reef flat grazing fishes may therefore play an increasingly important role in key ecosystem processes and in sustaining future fisheries yields.
AB - The reef flat is one of the largest and most distinctive habitats on coral reefs, yet its role in reef trophodynamics is poorly understood. Evolutionary evidence suggests that reef flat colonization by grazing fishes was a major innovation that permitted the exploitation of new space and trophic resources. However, the reef flat is hydrodynamically challenging, subject to high predation risks and covered with sediments that inhibit feeding by grazers. To explore these opposing influences, we examine the Great Barrier Reef (GBR) as a model system. We focus on grazing herbivores that directly access algal primary productivity in the epilithic algal matrix (EAM). By assessing abundance, biomass, and potential fish productivity, we explore the potential of the reef flat to support key ecosystem processes and its ability to maintain fisheries yields. On the GBR, the reef flat is, by far, the most important habitat for turf-grazing fishes, supporting an estimated 79% of individuals and 58% of the total biomass of grazing surgeonfishes, parrotfishes, and rabbitfishes. Approximately 59% of all (reef-wide) turf algal productivity is removed by reef flat grazers. The flat also supports approximately 75% of all grazer biomass growth. Our results highlight the evolutionary and ecological benefits of occupying shallow-water habitats (permitting a ninefold population increase). The acquisition of key locomotor and feeding traits has enabled fishes to access the trophic benefits of the reef flat, outweighing the costs imposed by water movement, predation, and sediments. Benthic assemblages on reefs in the future may increasingly resemble those seen on reef flats today, with low coral cover, limited topographic complexity, and extensive EAM. Reef flat grazing fishes may therefore play an increasingly important role in key ecosystem processes and in sustaining future fisheries yields.
KW - evolution
KW - herbivory
KW - hydrodynamics
KW - productivity
KW - reef fish
KW - sediment
UR - http://www.scopus.com/inward/record.url?scp=85044432608&partnerID=8YFLogxK
U2 - 10.1002/ece3.3967
DO - 10.1002/ece3.3967
M3 - Article
SN - 2045-7758
VL - 8
SP - 4108
EP - 4119
JO - Ecology and Evolution
JF - Ecology and Evolution
IS - 8
ER -