Abstract
We present a new algorithm for general reinforcement learning where the true environment is known to belong to a finite class of N arbitrary models. The algorithm is shown to be near-optimal for all but O(N log2 N) time-steps with high probability. Infinite classes are also considered where we show that compactness is a key criterion for determining the existence of uniform sample-complexity bounds. A matching lower bound is given for the finite case.
Original language | English |
---|---|
Pages | 1065-1073 |
Number of pages | 9 |
Publication status | Published - 2013 |
Event | 30th International Conference on Machine Learning, ICML 2013 - Atlanta, GA, United States Duration: 16 Jun 2013 → 21 Jun 2013 |
Conference
Conference | 30th International Conference on Machine Learning, ICML 2013 |
---|---|
Country/Territory | United States |
City | Atlanta, GA |
Period | 16/06/13 → 21/06/13 |