TY - JOUR
T1 - The spatial power spectrum and derived turbulent properties of isolated galaxies
AU - Körtgen, Bastian
AU - Pingel, Nickolas
AU - Killerby-Smith, Nicholas
N1 - Publisher Copyright:
© 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.
PY - 2021/8/1
Y1 - 2021/8/1
N2 - The turbulent dynamics of nearby and extragalactic gas structures can be studied with the column density power spectrum that is often described by a broken power law. In an extragalactic context, the breaks in the power spectra have been interpreted to constrain the disc scale height, which marks a transition from 2D disc-like to 3D motion. However, this interpretation has recently been questioned when accounting for instrumental effects. We use numerical simulations to study the spatial power spectra of isolated galaxies and investigate the origins of the break scale. We split the gas into various phases and analyse the time evolution of the power spectrum characteristics, such as the slope(s) and the break scale. We find that the break scale is phase dependent. The physics traced by the break scale also differ: in the warm gas it marks the transition from 2D (disc-like) to 3D (isotropic) turbulence. In the cold gas, the break scale traces the typical size of molecular clouds. We further show that the break scale almost never traces the disc scale height. We study turbulent properties of the interstellar medium (ISM) to show that, in the case where the break scale traces a transition to isotropic turbulence, the fraction of required accretion energy to sustain turbulent motions in the ISM increases significantly. Lastly, we demonstrate through simulated observations that it is crucial to account for observational effects, such as the beam and instrumental noise, in order to accurately recover the break scale in real observations.
AB - The turbulent dynamics of nearby and extragalactic gas structures can be studied with the column density power spectrum that is often described by a broken power law. In an extragalactic context, the breaks in the power spectra have been interpreted to constrain the disc scale height, which marks a transition from 2D disc-like to 3D motion. However, this interpretation has recently been questioned when accounting for instrumental effects. We use numerical simulations to study the spatial power spectra of isolated galaxies and investigate the origins of the break scale. We split the gas into various phases and analyse the time evolution of the power spectrum characteristics, such as the slope(s) and the break scale. We find that the break scale is phase dependent. The physics traced by the break scale also differ: in the warm gas it marks the transition from 2D (disc-like) to 3D (isotropic) turbulence. In the cold gas, the break scale traces the typical size of molecular clouds. We further show that the break scale almost never traces the disc scale height. We study turbulent properties of the interstellar medium (ISM) to show that, in the case where the break scale traces a transition to isotropic turbulence, the fraction of required accretion energy to sustain turbulent motions in the ISM increases significantly. Lastly, we demonstrate through simulated observations that it is crucial to account for observational effects, such as the beam and instrumental noise, in order to accurately recover the break scale in real observations.
KW - ISM: clouds
KW - ISM: magnetic fields
KW - galaxies: ISM
KW - galaxies: magnetic fields
KW - stars: formation
UR - http://www.scopus.com/inward/record.url?scp=85122351276&partnerID=8YFLogxK
U2 - 10.1093/mnras/stab1408
DO - 10.1093/mnras/stab1408
M3 - Article
SN - 0035-8711
VL - 505
SP - 1972
EP - 1986
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 2
ER -