The validity of optimal leaf traits modelled on environmental conditions

Keith J. Bloomfield*, I. Colin Prentice, Lucas A. Cernusak, Derek Eamus, Belinda E. Medlyn, Rizwana Rumman, Ian J. Wright, Matthias M. Boer, Peter Cale, James Cleverly, John J.G. Egerton, David S. Ellsworth, Bradley J. Evans, Lucy S. Hayes, Michael F. Hutchinson, Michael J. Liddell, Craig Macfarlane, Wayne S. Meyer, Henrique F. Togashi, Tim WardlawLingling Zhu, Owen K. Atkin

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    36 Citations (Scopus)

    Abstract

    The ratio of leaf intercellular to ambient CO 2 (χ) is modulated by stomatal conductance (g s ). These quantities link carbon (C) assimilation with transpiration, and along with photosynthetic capacities (V cmax and J max ) are required to model terrestrial C uptake. We use optimization criteria based on the growth environment to generate predicted values of photosynthetic and water-use efficiency traits and test these against a unique dataset. Leaf gas-exchange parameters and carbon isotope discrimination were analysed in relation to local climate across a continental network of study sites. Sun-exposed leaves of 50 species at seven sites were measured in contrasting seasons. Values of χ predicted from growth temperature and vapour pressure deficit were closely correlated to ratios derived from C isotope (δ 13 C) measurements. Correlations were stronger in the growing season. Predicted values of photosynthetic traits, including carboxylation capacity (V cmax ), derived from δ 13 C, growth temperature and solar radiation, showed meaningful agreement with inferred values derived from gas-exchange measurements. Between-site differences in water-use efficiency were, however, only weakly linked to the plant's growth environment and did not show seasonal variation. These results support the general hypothesis that many key parameters required by Earth system models are adaptive and predictable from plants’ growth environments.

    Original languageEnglish
    Pages (from-to)1409-1423
    Number of pages15
    JournalNew Phytologist
    Volume221
    Issue number3
    DOIs
    Publication statusPublished - 1 Feb 2019

    Fingerprint

    Dive into the research topics of 'The validity of optimal leaf traits modelled on environmental conditions'. Together they form a unique fingerprint.

    Cite this